Potassic dyke swarm in the Sapucai Graben, eastern Paraguay: petrographical, mineralogical and geochemical outlines

P. Comin-Chiaramonti^a, A. Cundari^b, C.B. Gomes^c, E.M. Piccirillo^d, P. Censi^a, A. DeMin^d, G. Bellieni^c, V.F. Velazquez^c, D. Orué^f

Istituto di Mineralogia, Petrografia e Geochimica, Università di Palermo, Italy
^bSchool of Earth Sciences, University of Melbourne, Australia
^cInstituto de Geociencias, Universidade de Sao Paulo, Brazil
^dIstituto di Mineralogia e Petrografia, Università di Trieste, Italy
^cDipartimento di Mineralogia e Petrologia, Università di Padova, Italy
^fFacultad de Ciencias Exactas y Naturales, Universidad de Asunción, Paraguay

(Received May 20, 1991; revised and accepted March 5, 1992)

ABSTRACT

Comin-Chiaramonti, P., Cundari, A., Gomes, C.E., Piccirillo, E.M., Censi, P., DeMin, A., Bellieni, G., Velazquez, V.F. and Orué, D., 1992. Potassic dyke swarm in the Sapucai Graben, eastern Paraguay: petrographical, mineralogical and geochemical outlines. In: A. Peccerillo and S. Foley (Editors), Potassic and Ultrapotassic Magmas and their Origin. Lithos, 28: 283-301.

The western side of the Paranà Basin of Brazil extends to central Paraguay, where repeated and widespread magmatic activity developed from Lower Cretaceous to Oligocene, associated with late Mesozoic crustal extension trending NE-SW. In central Paraguay this trend is characterized by a zone of NW-SE normal faults which formed the Asunción-Sapucai graben, up to 45 km wide and 200 km long, where alkaline rocks occur as volcanic domes, complexes, lava-flows and dykes. These rocks, 128 Ma aged, are dominantly potassic and ne-normative.

A swarm of at least 200, mainley NW-SE trending, dykes occurs in the Sapucai region and seems to be formed by two main lineages: tephrite to phonolite (and peralkaline phonolite) and alkali basalt to trachyphonolite. They are characterized by ubiquitous diopside to ferrosalite, consistently yielding Al enrichment trends; common olivine, Fo_{81-69} in tephrites and alkaline basalts, and up to Fo_{65} in phonolites; zoned megacrysts of hastingsitic hornblende(core) to kaersutite(rim), associated with accessory groundmass pargasite in tephrites and phonotephrites; K-rich hastingsite and K-rich ferroan pargasite in the phonolites. Accessory groundmass mica falls in the annite-phlogopite range, and consistently yields insufficient (Si+Al) to satisfy the expected T site occupancy of 8.00 a.f.u. Fe-Ti oxides are Ti-magnetite, rarely ilmenite or haematite. Phenocrystal, i.e. xenocrystal plagioclase is An_{70-20} , and An_{74-42} in the tephrites and phonolites, respectively; coexisting groundmass microlites are An_{22-14} , associated with sodasanidine and sanidine. Feldspathoids include analcimized leucite and nepheline; accessories Ti-andradite and sphene.

The two main lineages, recognized by distinctive mineralogical variations, are consistent with the petrochemical variations. Complex interaction of discrete and independently evolving magma batches are indicated by intra- and/or interphase chemical variations, suggesting multiple equilibrations of the crystallizing phases under shallow level, volcanic pressure regime. The observed geochemical trends are quite similar to those of "Roman Region type magma" with the same negative anomalies of Ta, Nb, Zr and Ti. The most likely mantle source is a garnet-peridotite characterized by different enrichment in incompatible elements and which suffered low degree of partial melting (3–7%), which has geochemical and isotopic features distinct from those of the adjoining tholeiitic basalts (130 Ma) and nephelinites (61–39 Ma).

The similarities of the Sapucai dyke suite with Barton's "Roman Region type magma" supports the

Correspondence to: P. Comin-Chiaramonti, Istituto di Mineralogia, Petrografia e Geochimica, Università di Palermo, Italy.

view that this magma type may not be formed as a result of orogenic and/or subduction-driven activity in this region. Therefore, a causal relationship of the latter activity with "Roman Region type magma" is not supported and remains questionable.

Introduction and geological setting

The eruption of "continental flood basalts" and coeval alkaline magmas in western Gondwana is related with the opening of the Atlantic Ocean and is, therefore, fundamental in understanding the interaction between magma genesis and the dynamics of the lithosphere (Piccirillo and Melfi, 1988).

Alkaline rocks associated with rift-graben systems in the hinterland of the Paranà Basin of Brazil are relatively minor, compared with the "flood basalt" event. However, they are important in that they significantly extend the petrological spectrum of "basaltic suites" related to the splitting of the western Gondwana.

The western side of the central Paranà Basin, corresponding to eastern Paraguay, was the site of repeated and widespread magmatic activity from Lower Cretaceous to Oligocene times (CominChiaramonti et al., 1990b and references therein). "Landsat", aeromagnetic and gravity data indicate that the eastern Paraguay region was subjected to NE-SW trending crustal extension during the late Mesozoic (Degraff et al., 1981; Degraff, 1985; Mariano and Druecker, 1985; Druecker and Gay, 1987; Livieres and Quade, 1987).

The resulting faulting formed a complex NWtrending graben structure (25-45 km wide and 200 km long) in the Asunciòn-Sapucai region where alkaline rocks forming dykes, lava domes, lava flows and shallow-level intrusive complexes are unconformable on the Silurian sandstone of the "Caacupè Formation".

The alkaline rocks of the Asunciòn–Sapucai region represent the major occurrence of K-alkaline magmatism in Paraguay (Palmieri, 1973; Gomes et al., 1989) with K_2O/Na_2O mainly from 0.6 to 4.0. This region abuts Mesozoic tholeiitic volcanics of

Fig. 1. Map of Asunción-Sapucai rift, Central-Eastern Paraguay, showing major areas of outcrops of igneous rocks, simplified from Bitschene (1987).

the "Serra Geral Formation" (130 Ma; Bitschene, 1987) on the eastern side and Tertiary (61-39 Ma) ultra-alkaline (sodic) rocks on the western side (Comin-Chiaramonti et al., 1991 and references therein). The potassic rocks (128 Ma; Velazquez et al., 1992) are close in time to continental splitting and rifting events which separated South America from Africa.

A mainly NW-SE trending dyke swarm of at least 200 dykes, 0.5 to 20 m thick, formed by alkaline assemblages, is concentrated near Sapucai town (Fig. 1). A systematic study of these rocks was initiated with the view of identifying petrological features characteristic of magmas undoubtedly related to a regime of continental rifting, where subcontinental mantle sources generated differentiated potassic suites of "low volcanicity", consistent with that of the "Serra Geral flood basalts". The origin and evolution of these sources may reflect specific geochemical characteristics of the lithospheric/asthenospheric mantle.

This paper presents essential mineralogical and bulk data necessary to delineate the features of the Sapucai dyke swarm. Detailed petrography and a mineral chemistry data are in Gomes et al. (1989) and in Comin-Chiaramonti et al. (1990a,b), or are available on request.

Analytical procedures

Mineral analyses were made on a ARL-SEMQ instrument at Cagliari University, operating at 15 kV and 20 nA. The standards were of oxides or simple silicate compositions. Major and trace element analyses of whole-rocks have been carried out at the Trieste University by X-ray fluorescence techniques using a Philips PW/1400 spectrometer on pressed-powder pellets. The preparation methods and analytical procedures have been described by Beilieni et al. (1983).

REE, Th and U of some selected samples were measured on a Perkin-Elmer Sciex Elan 500 mass spectrometer (upgrade to 5000), at CEPA s.r.l. (Palermo), following the procedures described by Alaimo and Censi (1992). Seven-point (1 to 500 ppb) multi-element calibration standard solutions were used to calculate elemental concentrations. Rh (210.6 ppb) was used as internal standard so compensate for any changes in analyzed signals.

Petrography and mineral chemistry

Following the classification of De La Roche et al. (1980), the mesozoic dyke swarm of the Sapucai area can be divided into two main lineages (Fig. 2):

(1) a silica-undersaturated lineage ranging from tephrites to phonolites and peralkaline phonolites;

(2) a silica-saturated lineage ranging from alkaline basalts to trachyphonolites.

The majority of the rock-types are notably porphyritic with between 10 and 40% phenocrysts+microphenocrysts set in hypohyaline to hypocrystalline groundmass.

(1) The first lineage

The generalized mineral assemblage in *tephrites* and *phonotephrites* is clinopyroxene + olivine + feldspars + feldspathoids (major constituents), Fe-Ti oxides + mica \pm amphibole (minor constituents) and accessory apatite, zircon and rare carbonates. Included in this group are rare rock-types with seriate mica+clinopyroxene (up 2 cm across) set in a glassy groundmass with microlites of clinopyroxene+mica+Fe-Ti oxides+feldspathoids (*minette*, according to Bergman, 1987 and Le Maitre, 1989).

Assuming $FeO/Fe_2O_3 = 0.17$, then:

Minette: MgO/(MgO+FeO)=Mg#=0.73-0.70; CIPW Ne=13-15%; (Na+K)/Al=0.75; K₂0/Na₂O=1.3-1.5.

Tephrite: Mg#=0.68-0.48; CIPW Ne=10-20%; (Na+K)/Al=0.65-0.75; K₂O/Na₂O=0.9-1.9.

Phonotephrite: Mg#=0.60-0.47; CIPW Ne=10-18% and CIPW Lc 0-14%; (Na+K)/Al=0.62-0.88; K₂O/Na₂O=1.2-1.9.

Phonolites have clinopyroxene + alkalifeldspar + feldspathoids \pm plagioclase \pm olivine \pm andradite \pm sphene set in a glassy matrix. Mica and Fe-Ti oxides are uncommon, amphibole is rare. They are distinguished in:

A-type: pseudoleucite megacrysts; MgO > 3 wt. %; CIPW Ne=17-27% and CIPW Lc=0-24%; (Na+K)/A1=0.95-0.96; K₂O/Na₂O=1.2-2.3 (up to group III ultrapotassic rock-types of Foley et al., 1987);

B-type: plagioclase megacrysts; MgO = 1.5-3.0 wt. %; CIPW Ne = 12-13%; (Na+K)/Al = 0.70-0.74; K₂O/Na₂O = 1.4-2.0;

C-type: aikali feldspar and nepheline megacrysts; MgO < 1.5 wt. %; CIPW Ne=22-28; (Na+K)/Al=0.90-0.94; $\frac{1}{2}O/Na_2O=0.75-0.77$;

Fig. 2. R_1 - R_2 plot (R_1 =4Si-11(Na+K)-2(Fe+Ti), R_2 =6Ca+2Mg+Al; De La Roche et al., 1980) with the main fields of potassic rock-types from the Sapucai dyke swarm. *T-PAP*, tephrite to phonolite (A-, B-,C-type and peralkaline phonolites) and *AB-TP*, alkali basalt to trachyphonolite lineages, respectively.

Peralkaline: garnet and sphene microphenocrysts; MgO < 0.5 wt. %; CIPW Ne=29-33%; $(Na=K)/Al=1.1-1.3; K_2O/Na_2O=0.62-0.71.$

(2) The second lineage

In the alkaline basalt to trachyphonolite lineage, clinopyroxene is the most abundant constituent, associated with plagioclase + alkali feldspar; olivine occurs in alkali basalts and in trachybasalts; mica is a common groundmass microlite, rarely phenocryst-microphenocryst in trachybasalts and trachyphonolites. Amphibole phenocrysts occur in the latter. Fe-Ti oxides are ubiquitous microphenocrysts and microlites. Phenocryst-microphenocryst sphene occurs in trachyphonolites; apatite and zircon are common accessories in all rock-types.

Alka ine basali: Mg# =0.63-0.56; CIPW Ne=4-7%; (Na+K)/A1=0.5)-0.56; K₂O/Na₂O=0.64-1.54;

Trachybasalt: Mg#=0.65-0.51; CIPW Ne=3-8; (Na+K)/A1=0.46-0.70; K₂O/Na₂O=0.65-2.50 (up to) group III ultrapotassic rock-types, according to Foley et al., 1987).

Trachyphonolites: Mg#=0.37-0.22; CIPW Nc=8-10; (Na+K)/Al=0.71-0.87; K₂O/ Na₂O=1.00-1.90.

Mineral chemistry

Clinopyroxene. Representative clinopyroxene analyses are given in Table 1. The highest Ca occurs in clinopyroxene from the more silica undersaturated rock compositions, the late-crystallized microphenocryst and groundmass clinopyroxene forming a characteristic Ca- and Fe-enrichment trend (Fig. 3). The Ti/Al ratio of the clinopyroxene from the minette and tephrites (Ti/Al=0.19-0.33) virtually overlaps the corresponding range for the clinopyroxene from phonotephrites (Ti/Al=0.14-0.35), the highest Ti/Al values matching the highest (Na+K)/Al ratio of the bulk rocks (i.e. > 0.70). Clinopyroxene from single specimens often display the whole Ti/Al variation reported for the tephritephonotephrite clan.

Megacryst compositions in A-phonolites are virtually identical to the above, whereas B- and Cphonolites contain augite (Ti/Al=0.16-0.20) and salite (Ti/Al=0.17-0.30) megacrysts, respectively. Peralkaline phonolites are characterized by megacrysts similar to the latter in composition, but mantled by ferrosalite rims (Ti/Al=0.11-0.18), matching the coexisting phenocrystal and ground-

Table 1 - Representative compositions of clinopyroxenes. M, P, mP and GM : megacrystals (>10 mm), phenocrystals (1-5 mm), microphenocryst.'s (0.2-1mm) and microlites, respectively. Structural formulae on the basis of 4 Cations and 6 Oxygens.

	MINETTE		<u> </u>	PHRIT	E	Pł	PHONOTEPHRITE				A-PHONOLITE		B-PHONOLITE		C-PHONOLITE	
	м	GM	м	mP	GM	M	P	æP	GM	M	GM	М	P	M	GM	
SiO ₂	53.55	49.31	49.69	50.68	46.14	53.93	49.17	48.22	43.75	50.33	45.80	49.76	51.41	46.58	46.57	
TiO2	0.67	1.94	1.34	1.68	2.48	0.26	1.72	2.16	4.70	1.23	3 <i>A</i> 0	1.18	0.98	1.55	1.41	
Al ₂ O ₃	1.28	4.11	3.94	3.74	7.36	1.16	5.18	4.54	9.92	3.03	6.66	3.89	5.10	5.91	4.99	
FeQ	4.96	7.52	8.04	5.96	9.57	4.05	7.36	7.30	10.91	6.01	8.95	8.21	9.19	11.67	11.58	
MnO	0.12	0.09	0.17	0.18	0.22	0.00	0.44	0.18	0.24	0.14	0.24	0.42	0.10	0.47	0.52	
MgO	17.00	14.57	14.57	14.57	11.94	17.79	13.A5	12.99	9.73	14.74	11.45	14.60	13.70	9.65	10.08	
CaO	22.26	22.31	21.36	22.78	21.46	22.29	22.21	23.05	20.08	22.91	22.14	21.08	21.31	22.22	22.32	
Na ₂ O	0.55	0.00	0.39	0.38	0.76	0.18	0.47	0.59	0.60	0.34	0.63	0.78	0.22	0.94	0.87	
Cr203	0.05	0.14	0.00	0.04	0.05	0.36	0.00	0.02	0.07	0.08	0.00	0.09	0.00	0.00	0.01	
Σ	100.44	99.99	100.00	99.63	99.9 8	100.02	100.00	99.05	100.00	98.81	99.27	100.01	100.01	98.99	98.35	
Fe ₂ 03	2.11	1.62	3.75	1.04	5.13	0.47	2.30	3.33	0.51	2.29	3.40	5.24	0.60	5.64	6.39	
Si	1.945	1.831	1.839	1.870	1.724	1.963	1.823	1.808	1.658	1.878	1.730	1.836	1.917	1.776	1.786	
ĂI IV	0.055	0.169	0.161	0.130	0.276	0.037	0.177	0.192	0.342	0.122	0.270	0.164	0.083	0.224	0.214	
2	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	
AI VI	0.000	0.011	0.013	0.033	0.047	0.012	0.049	0.009	0.101	0.011	0.026	0.006	0.054	0.042	0.012	
Fe++	0.093	0.183	0.144	0.155	0.155	0.110	0.164	0.126	0.331	0.123	0.186	0.108	0.287	0.210	0.187	
Fe+++	0.058	0.045	0.104	0.029	0.144	0.013	0.065	0.103	0.015	0.064	0.097	0.146	0.000	0.162	0.184	
Mg	0.920	0.806	0.803	0.801	0.664	0.965	0.743	0.726	0.550	0.820	0.644	0.803	0.761	0.549	0.576	
Mn	0.004	0.003	0.005	0.006	0.007	0.000	0.013	0.006	0.008	0.004	0.008	0.013	0.003	0.015	0.017	
Ti	0.018	0.054	0.037	0.047	0.070	0.007	0.048	0.061	0.134	0.035	0.097	0.033	0.028	0.044	0.041	
Cr	0.001	0.004	0.000	0.001	0.001	0.010	0.000	0.001	0.002	0/202	0.000	0.003	0.000	0.000	0,000	
Ča	0.866	0.888	0.867	0.901	0 858	0.869	0 882	0.926	0815	0.916	0206	0 234	0.852	0.000	0.018	
Na	0.041	0.000	0.928	0027	0.055	0.013	0.034	0.043	0.044	0.025	0046	2200	0.016	0.000	0.065	
Σ	2.001	1.999	2.001	2.000	2.001	2.000	2.000	2.001	2000	2.000	2.000	2.000	2.001	2.000	2.000	
Ce	AA 6	46.0	45 1	476	A6 0	áà A	47.2	40.1	A7 A	475	49 0	43.9	AA 8	40.7	49 8	
Mo	A7 A	41.2	417	A7 3	36 3	40 3	30.9	28 5	320	42.6	25 2	42.2	40.0	20 8	30.6	
Fe**	8.0	12.2	13.2	10.1	16.8	6.3	13.0	12.4	20.6	9.9	15.9	14.0	15.2	21.0	20.6	
mg#	0.908	0.811	0.848	0.838	0.811	0.898	0.819	0.852	0.624	0.869	0.776	0.881	0.726	0.723	0.755	
Carpenta Multiplica	PEI	RALKA	LINE	ALK	ALINE	ТРАСНУВА				.T		TRAC	IYPHON	IOLITE		
	PI	HONOL	.rie	BAS	SALT											
Continues (Control	М	P	GM	М	GM	MI	M2	Р	P	GM	GM	P	GM	GM		
SiOn	48 02	48 67	50.85	52.45	40 43	કર કર	51 54	50 77	\$0.32	50 57	50.83	40 00	47 60	52.00		
TiO	171	0.73	2 22	6.20	1 22	013	0.50	0.74	093	0.67	1.55	1 42	1 20	045		
AL-0-	A 67	2 04	1 57	2.02	A 20	001	2 68	2 92	4 52	5.60	3 17	3 70	500	1 36		
E-03	6.22	17 67	74.75	4 30	0.04	967	447	6 36	0.02	0.09	7 79	6.74	11 79	16 12		
14-0	0.20	141	175	9.63	0.10	0.17	0.12	0.50	0.00	011	0.40	0.24	0.37	13.13		
MaO	1747	1.01	1.75	16 75	13 20	14 11	16 79	14 63	14 27	11 55	12 43	11.94	10.37	945		
mgO C-O	12.07	20.00	1.00	10.75	13.30	14.11	13.78	19.03	14.57	11.33	13,43	11.04	10.12	10.55		
CEO	22.33	20.22	9.24	23.33	21.30	22.10	42.30	22.33	21.92	21.00	66.14	63-63	A 06	19.02		
14220	0.33	1.30	0.97	0.00	0.12	0.58	0.36	0.32	0.12	1.87	0.99	0.08	0.00	2.13		
Σ Σ	100.00	99.95	99.85	99.99	100.01	99.76	99.16	98.84	100.01	100.98	99.99	99.98	99.88	100.54		
	4.90	2 10	10 45	,	1.00		A 89		6. DE		3 63	3.00	4 20	7.07		
re 03	4.29	6.13	18.45	1.23	193	1.10	0.85	214	0.95	4.69	3.32	2.90	4.09	7.07		
Si	1.797	1.882	1.949	1.920	1.849	1.998	1.904	1.894	1.865	1.854	1.883	1.869	1.799	1.957		
AI IV	0.203	0.118	0.051	0.080	0.151	0.001	0.096	0.106	0.135	0.146	0.117	0.131	0.201	0.043		
Σ	2.000	2.000	2.000	2.000	2.000	1.999	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000		
AI VI	0.003	0017	0.020	0.007	0 034	0000	0 034	0.022	0.063	0.096	0.019	0.014	0.023	0.017		
Fett	0171	0 389	0.261	0.008	0 257	0 237	0 104	0 112	0 223	0 149	0143	0.206	0.223	0.276		
Fa +++	0121	0.000	6 533	0.024	0.054	0.001	0.007	0.060	007	0 129	0.008	0.083	0 133	0.200		
Ma	0.121	0.110	0.332	0.034	0.000	0.031	0.037	0.954	0704	0 631	0741	1 44 0	0 570	0.480		
Ma	0.700	0.284	0.007	0.314	0.791	0.769	0.000	0.824	0.794	0.031	0.013	0.001	0.012	0.000		
MIN T:	0.012	0.005	0.00/	0.002	0.000	0.009	0.004	0.000	0.00/	0.010	0.015	0.001	0.012	0.044		
	0.048	0.021	0.064	0.008	0.034	0.004	0.014	0.021	0.020	0.027	0.055	0,040	0.004	0.013		
Cr	0.009	0.001	0.000	0.023	0.003	0.000	0.025	0.006	0.002	0.001	0.001	0.002	0.001	0.0.0		
Ca	0.904	0.838	0.380	0.915	0.862	0.907	0.885	0.900	0.850	0.825	0.879	0.933	0.919	0.791		
Na	0.025	0.120	0.629	0.000	0.009	0.027	0.027	0.023	0.008	0.133	0.071	0.049	0.065	0.201		
Σ	2.000	2.000	2.000	2.000	2.000	1.999	2.000	1.999	2.000	2.001	2.000	1.999	2.000	2.000		
Ca	47 8	18 B														
	41.2	43.3	29.5	46.6	44.9	46.1	46.6	46.7	44.7	47.3	46.9	49.3	49.5	44.7		
Ma	47.2	43.3 20.9	29.5 4.4	46.6 46.6	44.9 38.ñ	46.1 39.8	46.6 45.7	46.7 42.8	44.7 41.8	47.3 36.2	46.9 39.5	49.3 34.9	49.5 30.7	44.7 27.1		

0.857

0.891

0.781

0.809

0.838

0.762 0.719

0.635

 $Fe_2O_3^\circ$ calculated from stoichiometry; $Fe^{\circ \circ} = Fe^{2*} + Fe^{3*} + Mn; mg#=Mg/(Mg+Fe^{2*})$.

0.742

0.768

0.179

0.903

0.805 0.497

mg#

Fig. 3. Compositions of clinopyroxene in the various clans. Tie lines connect coexisting clinopyroxenes.

mass pyroxene. Microlites in these rocks are aegirine-augite (acmite up to 63% mol; Ti/Al up to 0.90).

The clinopyroxene from the alkali basalt-trachyphonolite lineage is generally similar to that in the tephrite-phonotephrite clan. As in the latter, megacrysts show diopsidic cores mantled by salite rims. Two distinct megacryst generations were observed, i.e. diopside and salite with (Si+A1) < 2.00 and (Si+A1) > 2.00, corresponding to Ti/A1=4 and 0.11, respectively. The former megacrysts probably crystallized from liquid compositions with (Na+K) > 1 (Cundari and Ferguson, 1982).

Olivine. Olivine (Table 2) is commonly microphenocryst to groundmass phase (Fo_{76-68}) in tephrites and megacryst to microphenocryst (Fo_{79-70}) in phonotephrites. Microphenocrysts or groundmass olivine is present only in A- and B-phonolites (Fo_{75-65}). Olivine megacryst up to microphenocrysts occur also in alkali basalts and trachybasalts (Fo_{82-56}), attaining Fo_{48} in the microlites from the trachybasalt groundmass.

Olivine compositions appear to be in broad equilibrium with the coexisting clinopyroxene, but megacrysts and phenocrysts from phonotephrites yielded higher forsterite than the expected equilibrium temperatures.

In general, close chemical correlations apply only to the olivine-clinopyroxene pairs from tephritephonotephrite and phonolite dykes, reflecting their cognate relationships, whereas there is poor linear correlation for $Fe_t/(Fe_t+Mg)$ values between coexisting olivine and clinopyroxene compositions in alkali basalt-trachybasalt rock-types.

Fe-Ti oxides. Magnetite-ulvospinel solid solutions occur as microphenocrysts and groundmass constituents; coexisting magnetite-ilmenite pairs were rarely observed as microlites in tephrites, phonotephrites, B-phonolites, being more common in alkali basalts (Table 3) and generally indicate T°C and f_{O_2} conditions above the QMF buffer curve (Fig. 4). Haematite is a common groundmass constituent in peralkaline phonolites, but also mantling and/or replacing magnetite in the other rock-types. Notably, Ti-magnetite with decreasing ulvospinel proportion, i.e. 73 to 9 mo¹%, was observed in alkali basalt to trachyphonolite rock-types.

Similar to the tephrite-phonotephrite and phon-

Table 2 - Representative compositions of olivine. Letters as in Table 1. Structural formulae on the basis of 4 Oxygens.

	TEPHRITE			PHONOTEPHRITE			PHONOLITE			ALKALINE BASALT		TRACHYBASALT		
							A-type	B-type		fannen an en ander andere ander produce		- Now do high restored		Personal Colors
	P	mP	GM	M	P	mP	mP	mP	GM	P	GM	M	mP	GM
SiQ 2	38,42	38.41	37.39	39.39	38.92	37.60	38.21	38.06	36.92	39.24	37.81	39.51	38.08	34.63
FeO.	21.77	21.79	27.43	18.49	20.38	26.21	21.34	23.56	29.42	17.53	27.21	16.47	24.03	41.37
MaO	0.34	0.90	0.58	0.49	0.56	0.39	0.58	0.71	0.74	0.38	0.62	0.31	1.26	1.02
MgO	38.90	38.40	33.88	41.59	39.79	35.09	38.31	36.87	32.09	42.19	34.57	43.20	36.56	22.12
CaO	0.29	0.28	0.58	0.40	0.66	0.36	0.63	0.54	0.53	0.26	0.52	0.46	0.21	0.63
Σ	99.72	99.78	99.86	100.36	100.31	99.65	99.07	99.74	99,70	99.60	100.73	99 .95	*:30.14	99.81
Si	0.998	1.000	1.000	1.001	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	1.000	1.000
Fe++	0.471	0.473	0.611	0.392	0.436	0.581	0.465	0.516	0.664	0.372	0.599	0.347	0.526	0.996
Mn	0.007	0.020	0.013	0.011	0.012	0.009	0.013	0.016	0.017	800.0	0.014	0.007	0.028	0.025
Me	1.516	1.500	1.359	1.585	1.533	1.400	1.504	1.453	1.304	1.613	1.372	1.638	1.440	0.960
C	0.008	0.008	0.017	0.011	0.018	0.010	0.018	0.015	0.015	0.007	0.015	0.012	0.006	0.019
Σ	3.000	3.001	3.000	3.000	2.999	3.000	3.000	3.000	3.000	3.000	3.000	3.003	3.000	3.000
Fo	75.72	74.96	67.95	79.29	76.69	70.00	75.20	72.65	65.20	80.65	68.60	81.73	72.00	48.00
Fa	23.53	23.64	30.55	19.61	21.81	29.05	23.25	25.80	33.20	18.59	29.95	17.32	26.30	49.80
Tob	0.35	1.00	0.65	0.55	0.60	0.45	0.65	0.80	0.85	0.40	0.70	0.35	1.40	1.25
Ler	0.40	0.40	0.85	0.55	0.90	0.50	0.90	0.75	0.75	0.35	0.75	0.60	0.30	0.95
mell	0.763	0.760	0.690	0.802	0.779	0.707	0.764	0.738	0.663	0.813	0.696	0.825	0.732	0.401

 $mg# = Mg/(Mg+Fe^{2+})$

olite assemblages, Ti-magnetite from the Vico and Sabatini leucite-tephrite/phonolite suite, Roman Region, contains $TiO_2=8-17\%$, in absence of co-existing ilmenite (Cundari, 1975; 1979).

Mica. Mica is a Ti-rich member of the annitephlogopite series (Table 4; Fig. 5A). The Fe₂O₃/ FeO ratios, estimated from charge balance, are consistently higher in the mica from first lineage (2.1– 15.0) than the Fe₂O₃/FeO ratios in the mica from the second one (0.5–0.9); systematically (Si+Al) < 8.06 a.f.u., with Ti completing the occupancy of the f sites.

Likewise, mica from Vico and Sabatini leucitetephrite/phonolite suites is phlogopite, generally with (Si+Al) > 8.00, but also (Si+Al) < 8.00 and TiO₂=2-5 wt. % (Cundari, 1975; 1979). Virtually identical compositions were reported by Holm (1982) for mica occurring in leucite-tephrite/leucitites from the Vulsini complex, Roman Region. Mica from tephrite to phonolite lineage is higher in Ti (TiO₂=5-8 wt. %) compared with mica from the above Roman Region lavas, but is close to the range (TiO₂=4-7 wt. %) reported for mica in southwestern Ugandan phonolitic tephrite series (Ferguson, 1978).

Ti-rich mica, phenocryst, microphenocryst and microlites occurring in trachybasalts and trachyphonolites has compositions fitting the magnetitehaematite buffer (Fig. 5B), whereas the mica from minette-tephrite-phonotephrite and phonoliteperalkaline phonolite clans is clearly removed from the regions of buffered compositions, suggesting that mica crystallization in the corresponding liquids may have occurred under unbuffered conditions.

Amphibole. Pargasitic amphibole is an accessory groundmass phase in the tephrite-phonotephrite rock-types, and may coexist with megacryst amphibole varying from hastingsitic hornblende (core) to kaersutite (rim), according to Leake's nomenclature (Table 5). Similar to mica, all the analyzed amphiboles are characterized by (Si+Al) < 8.00 a.f.u. and Ti may complete the occupancy of the T sites. Notably, the sum of cations, based on 23 oxygens is less than the expected 16 a.f.u., Ca is restricted to M4 and the occupancy of the A site is low (Na+K=0.8-0.9 a.f.u.), K/Na varying in the range0.4-0.5. These crystal chemical characteristics are shared with amphiboles in tephritic lavas from Sabatini (Cundari, 1979) and Vulsini lavas (Holm, 1982) and the Cordon Complex, Philippines (Knittel and Cundari, 1990).

A more extensive amphibole crystallization, relative to the tephrites-phonotephrites, is indicated for the C- and peralkaline phonolites, where the full textural range, from megacryst K-rich ferroan pargasite to groundmass, K-rich Mg-hastingsite, is represented (Table 5, Fig. 6). The T site is completed by (Si+Al); the sum of cations, based on 23 oxygens, exceeds 16 a.f.u., averaging 16.067 ± 0.087 ; (Na+K)>1 a.f.u. and K/Na=0.7-0.9.

Ferroan pargasite phenocrysts, microphenocrysts

3
ш
1
m,
.≺
-

Representative compositions of Fe-Ti oxides. Fe₂O₃ and FeO calculated on ulvespinel and ilmenite basis for cubic and rombohedral phases and structural formula on the basis of 32 end 3 Oxygens. respectively

HI	M	0.00 2.16 1.18 1.18 1.18 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29	63.55 31.56 100.15	0.000 0.4540000000000	8.98
TRAC	1	9250 9250 9250 9250 9250 9250 9250 9250	49.46 37.14 100.45	0.087 2.046 0.609 0.277 0.277 0.277 0.245 0.245 0.245 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.005 0005 0005 0005 0005 0005 0005 0005 0005 0005 0005 0005 0005 0005 0	35.29
HY LT	WD	0.24 11.11 1.86 1.41 1.41 0.83 0.05 0.05 0.05 0.05 0.05 0.05 0.05	47.04 39.85 102.69	2300 2300 2300 2300 2300 2300 2300 2300	40.63
TRAC BASA	WD	0.17 3.17 7.48 0.77 0.10 0.10 0.10 0.10 0.10 0.10 0.10	32.21 45.85 100.88	2000 2000 2000 2000 2000 2000 2000 200	Sa.70
LT LT	W	80000000000000000000000000000000000000	13.17 35.40 99.94	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.000000	7.36
ALK/ BAS/	MB	0.22 1.95 1.86 0.08 0.08 0.08 0.08 0.08 0.08 0.08	22.76 50.35 99.74	0.065 5.034 5.034 5.038 5.038 0.038 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000	12.51
	per GM GM	888 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	90.08 0.71 100.00	0.000 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	83.49
	E E	221 222 223 223 223 223 223 223 223 223	44.07 37.82 102.21	0.063 2.639 9.556 9.556 9.556 0.790 0.7000 0.700000000	43.34
E	C-tyl	92000 9200000000	57.33 34.46 100.82	0.081 1.179 0.520 0.394 0.197 0.016 0.0016 0.0016 0.0016	21.90
LITONO	Be GM	80.000 2000 2000 2000 2000 2000 2000 200	80.05 95.95 00.00	0.000 0.150 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	6.35
Ħd	B-ty	20.17 5.16 0.08 0.08 0.08 0.08 0.00 0.00 0.00 0.0	24.15 47.20 100.01	0.049 1.759 5.258 5.258 0.216 0.216 0.037 0.037 0.037 0.037 0.037	65.54
	e Mg	000 16.38 71.63 14.55 2.99 2.99 2.99 2.99 2.99 2.99 2.99 2	33.49 41.49 99.95	0.000 3.569 1.554 1.256 0.034 0.034 23.999	54.60
	A-tyl GM	0.49 9.89 79.17 0.32 0.32 0.08 0.08 0.08 0.08	45.68 38.06 98.63	0.149 2.255 2.255 0.149 0.667 0.145 0.145 0.019 24.000	39.23
	GM	0.20 86.95 1.07 0.026 0.026 0.026 0.026 0.026 0.026	57.90 34.84 101.18	0.060 1.011 1.011 1.005 0.011 0.009 0.009 0.009 0.009 0.009 0.009	18.82
HRITE	GM	000 49.55 1.23 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0	21.47 30.22 100.94	0.000 0.138 0.1394 0.0616 0.0616 0.0616 0.0616 0.068 0.068 0.068 0.068	15.11
NOTE	GM	000 1455 1355 1119 1119 1119 1119 1119 1119 11	37.16 39.91 101.05	0.000 3.116 1.599 8.6019 0.289 0.012 0.012 0.012 0.012 0.012	48.90
DHd	웥	0.22 6.65 6.65 6.65 6.65 6.65 6.65 6.65 6	25.91 42.30	0.062 5.519 5.519 0.012 0.024 0.024 0.024 0.024	61.18
	MB	46.915 42.938 42.938 3.75 98.50 98.50 98.50	10.67 33.35 99.57	0.00683	7.13
RITE	QM	0.16 8.74 78.48 0.92 0.05 0.05 0.05	47.74 35.51 99.51	0.047 1.295 1.295 0.230 0.069 0.016 0.110 0.110 0.110	33,17
TEPH	fa	0.19 5.67 5.67 5.67 5.67 71.78 0.83 0.83 0.13 0.15 0.15 0.15	34.52 40.71 100.85	2,000 2,0000 2,0000 2,0000 2,0000 2,0000 2,0000 2,00000 2,0000 2,0000 2,	51.76
	- L	0.19 5.79 5.78 5.78 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67	29.24 41.12 100.54	0.053 3.838 5.192 9.676 0.160 2.038 2.038 2.038 2.038 2.038 2.038 2.038	58.68
AINETTE	MB	0.31 0.72 0.77 0.08 0.08 0.08 0.08 0.08 0.08 0.08	47.42 39.92 100.00	0.094 0.275 0.275 0.267 0.036 0.036 0.036 24.002	38.54
	1	20 20 20 20 20 20 20 20 20 20 20 20 20 2	Fe ⁰ 3 Σ	ан стар	Ulv.mol% Hm.mol%

Fig. 4. Stability relations in $f_{O_2}-T$ °C space for magnetiteilmenite pairs. Abbreviations and symbols as in Fig. 3. Buffers are from Specer and Lindsley (1981)

and microlites also occur in trachyphonolites. Occupancy of the A site, K/Na ratio, Ti and calculated Fe^{3+} values are intermediate between the analogues for amphiboles in tephrites and phonolites.

Feldspars. Zoned plagioclase phenocrysts and microphenocrysts (An_{70-20}) prevail in hypocrystalline assemblages of the tephrite-phonotephrite clan, coexisting with late-crystallized oligoclase (An_{20-14}) . Sodic sanidine (Ab_{39}) and/or albite patches occur in tephrites; sanidine (Ab₁₇₋₁₈) and/or sodic sanidine (Ab 40-43) microlites in phonotephrites. Plagioclase megacrysts (An_{74-42}) to microphenocrysts (An₆₄₋₂₆), commonly mantled by sodic sanidine $(c.Ab_{40})$, were only observed in B-phonolites and are considered as xenocrysts. Rare microphenocrysts and groundmass plagioclase (An₂₂₋₁₆) were observed in A-phonolites, while none was detected in C-phonolites. Feldspars from phonolitic rocks follow Ca-depletion, Na-,K-enrichment trends, and Ca-, Na-depletion and K-enrichment trends, for plagioclase and alkali feldspar, respectively, consistent with the feldspar crystallization trends in leucite-bearing rocks from the Roman Region (Ferguson and Cundari, 1982).

Alkali basalt-trachybasalt assemblages are characterized by zoned microphenocrysts (An_{69-30}) and homogeneous plagioclase (An_{26-20}) and alkali feldspar (Or_{52}) microlites. Plagioclase megacrysts (An_{13-12}) occur in trachyphonolites, where the groundmass feldspar is typically sanidine/Nasanidine.

Feldspathoids. Euhedral analcime and/or pseu-

Table 4 - Representative compositions of micas. Structural formulae on the basis of 22 Oxygens and Fe₂O₃ as from charge balance.

	MINETTE		PHONO TEPHRITE		P	PHONOLITE			THY ALT	TRACHY PHONO
•	-		60000000000000000000000000000000000000		A-t	/pe	B-type			
	Мс	Mr	GM	GM!	GM	GM	GM	P	mP	GM
SiOn	38.78	36.82	35.42	36.61	35.10	36.24	36.00	38.35	38.00	36.97
TiO ₂	5.86	5.23	7.06	6.82	8.57	7.85	6.95	8.49	8.07	7.87
Al ₂ Ō ₃	15.04	15.05	13.62	14.30	15.55	13.70	14.85	14.33	14.19	17.81
FeÕ	11.19	17.09	18.64	16.09	14.99	18.28	14.29	11.30	12.78	16.94
MnÖ	0.12	0.26	0.29	0.32	6.23	0.30	0.26	0.11	0.34	0.21
MgO	17.78	14.05	13.19	14.20	13.24	931	13.87	14.90	13.88	10.94
CaO	0.00	0.00	0.03	0.01	0.02	0.04	0.04	0.05	0.00	0.03
Na ₂ O	0.13	0.00	0.66	0.25	0.52	0.64	0.66	0.58	0.45	0.50
K-D	8.37	8.45	8.53	3.51	8.75	9.70	9.37	8.68	8.56	8.43
Cr.O.	n.d.	n.d.	0.04	0.03	0.00	0.00	0.03	0.07	0.00	0.03
Σ^{-2}	97.27	96.95	97.48	97.14	96.97	96.06	96.32	96.65	96.27	95.73
Fe ₂ 03	9.90	12.34	16.15	11.78	11.11	10.37	14.80	5.70	5.63	6.08
Si	5.396	5.274	5.084	5.237	5.036	5.362	5.149	5.451	5.467	5.459
AI IV	2.467	2.541	2.304	2.411	2.630	2.389	2.503	2.401	2.407	2.404
Ti	0.137	0.185	0.612	0.352	0.334	0.249	0.348	0.148	0.126	0.137
Σ	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000
AI VI	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe ++	0.265	0.716	0.492	0.657	0.599	1.108	0.116	0.733	0.928	1,417
Fe +++	1.037	1.330	1.745	1.268	1.260	1.155	1.593	0.610	0.610	0.675
Ma	3.688	3.000	2.822	3.028	2.831	2.054	2.957	3.136	2.977	2.406
Mn	0.014	0.031	0.035	0.039	0.028	0.038	0.032	0.013	0.041	0.026
Ti	0.476	0.378	0.150	0.382	0.591	0.625	0.400	0.760	0.747	0.737
Cr		•	0.005	0.004	0.000	0.000	0.003	0.008	0.000	0.003
Σ	5.480	5.455	5.429	5.378	5.249	4.980	5.101	5.7.60	5.303	5.264
Ca	0.000	0.000	0.005	0.002	0.003	0.006	0.006	0.005	0.000	0.004
Na	0.035	0.000	0.184	0.069	0.143	0.184	0.183	0.160	0.126	0.144
K	1.486	1.544	1.562	1.553	1.602	1.831	1.710	1.574	1.571	1.588
Σ	1.521	1.544	1.751	1.624	1.748	2.021	1.899	1.742	1. 69 7	1.736

Fig. 5.(A) micas plotted in terms of Al-Mg-Fe²⁺ (22 oxygen basis and assuming total Fe as divalent). (B) micas plotted in the Fe³⁺-Fe²⁺-Mg diagram (Wones and Eugster, 1965; Fe³⁺ from charge balance). Abbreviations and symbols as in Fig. 3.

doleucite pseudomorphs occur in most tephritephonotephrite dykes. Pseudoleucite megacrysts are particularly abundant in A-phonolites, while feldspathoids are confined to the groundmass of Bphonolites. Nepheline (Ks=1-20 wt. %) megacrysts, phenocrysts and microlites occur in C- and peralkaline phonolites. Notably, feldspathoids were not observed in the alkali basalt-trachyphonolite lineage.

Feldspathoid compositions from tephrite-phonotephrite rocks tend to cluster along the Analcime (Anl)-Leucite(Lc) tie line of Petrogeny's Residua System and fall in the primary leucite field, coexisting with Anl-rich compositions in both phonotephrite and phonolite assemblages. Both analcime and pseudoleucite are considered leucite pseudomorphs (cf. Comin-Chiaramonti et al., 1979).

Garnet and sphene. Titanian andradite $(TiO_2=3.5-6.0 \text{ wt. }\%; \text{ andradite}=78-84\% \text{ mol.})$ with $Fe^{3+} > Ti$ in the octahedral site and $Al^{1V}/Al^{V1}=0.5-0.9$ occurs as microphenocrysts in C- and peralkaline phonolites. A similar garnet composition $(TiO_2=2-6 \text{ wt. }\%; Al_2O_3=9.8-7.7 \text{ wt. }\%; Ferguson, 1978)$ occurs in a leucite phonolite from the Alban Hills, Roman Region, Ti and Al being negatively correlated from early- to late-crystallized garnet compositions.

While Ti and andradite contents appear to be positively correlated in the garnet from peralkaline phonolites, rims of zoned microphenocryst garnet from C-phonolites tend to be enriched in both Al and Ti, reflecting lower Al and higher Fe^{3+} in the related core compositions. It seems, therefore, pos-

Table 5 - Compositions of amphiboles . Structural formulae on the basis of 23 Oxygens and Fe_2O_3 as from charge balance.

	TEPI	IRITE		TRACHY PHONOLITE						
		_		C-type		P	eralkalin	e		
	м	GM	Р	mP	GM	М	Р	GM	Р	GM
SiO ₂	43.28	44.34	38.19	37.67	37.57	36.06	36.59	36.27	38.36	39.11
TiO ₂	4.07	3.79	1.42	2.37	1.98	2.21	2.17	3.20	3.89	402
Al ₂ O ₃	9.87	8.78	12.45	12.92	12.81	14.13	13.47	13.82	14.24	13.27
FeÜt	9.90	9.64	22.90	21.42	23.02	23.80	23.34	22.35	15.04	13.84
MnO	0.28	0.09	0.70	0.89	0.99	1 04	0.96	0.83	0.36	0.28
MgO	15.38	15.84	6.64	7.28	6.32	5.38	5.77	6.12	10.27	11.58
CaO	12.32	11.46	10.97	11.37	11.13	11.23	10.99	11.36	11.86	11.80
Na ₂ O	2.40	2.48	2.40	2.08	2.10	2.10	2.26	2.16	2.19	2.16
K ₂ O	1.63	1.68	2.49	2.49	2.52	2.60	2.49	2.37	2.10	2.12
Σ-	99.13	98.10	98.16	98.49	98.44	98.55	98.04	98.50	98.31	98.18
Fe ₂ 03	0.14	0.00	3.12	3.51	3.87	4.31	3.69	2.91	0.67	1.01
Si	6.293	6.479	5.975	5.839	5.866	5.658	5.750	5 667	5 791	5 860
AI IV	1.692	1.513	2.025	2.161	2.134	2.342	2.241	2 333	2 209	2 1 3 1
Ti	0.015	0.008	0.000	0.000	0.000	0.000	0.000	000	000	0,000
Σ	8.000	8.000	8.000	N.000	8.000	8.000	8.000	8.000	8.000	8.000
AI VI	0.000	0.000	0271	0 200	0 224	0 272	A 259	0 212	0.336	0.014
Fe++	1.188	1.178	2.620	2 367	2 552	2615	2626	0.213	0.233	0.210
Fe+++	0.015	0.000	0.368	0410	0 454	0.409	0 427	0242	1.623	1.023
Mg	3.333	3.449	1.548	1.682	1 471	1 258	1 2 4 2	1 475	2311	0.114
Mn	0.034	0.011	0.093	0.117	0131	0 139	0 129	0 1 10	2.511	2.390
Ti	0.430	0.409	0.167	0 276	0 233	0.261	0.120	0.110	0.040	0.030
Σ	5.000	5.047	5.076	5.052	5.065	5.052	5.069	5.044	5.023	5.033
Ca	1.919	1.794	1 8 3 0	1 990	1 967	1 800	1.853	1.005		
Na	0.676	0.703	0.728	0.675	0.636	1.000	1.633	1.903	1.918	1.897
к	0.302	0313	0407	0.023	0.030	0.039	0.090	0.004	0.641	0.629
Σ	2.987	2.810	3064	3 006	2,000	2.049	0.300	0.472	0.404	0.406
		2.510	2.004	2.000	3.000	3.046	3.045	21121	2.963	2.932

Fig. 6. Amhiboles plotted in terms of atomic Mg/ (Mg+Fetotal) versus K/Na, Ti, Fe3+, (Na+K)A and Si+Al. Abbreviations and symbols as in Fig. 3.

sible that the garnet in C-phonolites may be xenocryst.

Microphenocryst sphene is also a ubiquitous accessory of C-type and peralkaline phonolites and in trachyphonolite. Major element contents are relatively constant (SiO₂=30.0-30.8; TiO₂=38.0-38.6; CaO 26.4-27.4 wt. %); however significant Nb variations were detected (Nb₂O₅=0.27-0.41 wt. %), which correlate with bulk-rock Nb content.

Significance of the mineralogy

Strong chemical affinities have been documented between major and minor phases in the Sapucai dykes and their analogues from Roman Region. Consistent with the clinopyroxene from Roman Region lavas, the clinopyroxene from the tephritephonolite lineage indicates crystallization from metaluminous liquids in its T site configuration and characteristic Al- and Ca-enrichment trend typical of leucitite crystallization residua, i.e. liquids with (Na+K)/Al>1.0 and relatively high Ti/Al ratio (Cundari and Ferguson, 1982). The coexisting amphibole reflects these liquids in its T site (Si + AI)occupancy to 8.00 a.f.u., consistent with increasing (8-Si)/Al_(total) ratio with increasing (Na+K)/Al of the bulk rock, documented in leucite-bearing rocks from different tectonic regimes (Ferguson, 1978).

The common occurrence of olivine and its broad equilibrium relationship with the coexisting clinopyroxene in tephrite/phonolite assemblages is consistent with the differentiation controls of the southwestern Uganda (Bufumbira) leucite-tephrite series (Ferguson and Cundari, 1975). This contrasts with the evolution of the Roman Region lavas, where plagioclase+leucite played a dominant role in the differentiation of the tephritic magmas (Cundari and Mattias, 1974; Cundari, 1975, 1979; Holm, 1982). Therefore, the differentiation history of the Sapucai magmas remained largely within the stability fields of the ferromagnesian phases, notably olivine+pyroxene, in the system Mg_2SiO_4 -KAISiO_4-SiO₂ (cf. Edgar, 1980), suggesting that a relatively high-temperature subvolcanic regime prevailed in the Sapucai magmas, compared to that of the Roman Region.

The extreme differentiates from both tephritephonolite and alkali basalt-trachyphonolite lineages approach the composition of peralkaline residua, suggesting an extended subvolcanic crystallization hystory of K-rich, aluminous phases like phlogopite and leucite, at least for the tephritephonolite lineage (cf. Cundari and Ferguson, 1982). The phonolitic assemblages may have developed from peralkaline precursor, as documented for the Cordon Complex of the Philippine arc system (Knittel and Cundari, 1990). The widespread occurrence of megacryst/phenocryst, probably xenocrysts phases, points to crystal/liquid mixing from chemically distinct magma batches during their ascent to the surface. Substantial evidence supporting this processes is available from the Roman Region and elsewere (e.g. Barbieri et al., 1988; Knittel and Cundari, 1990).

Geochemistry

Major and trace elements

Among the wide range of compositions represented in the Sapucai dykes, only representative analyses are given in Table 6 to illustrate the compositional variation of the main rock-types with Mgvalues ≥ 0.48 .

In the total aikali-silica and K₂O-silica diagrams (Fig. 7) the shaded fields show the more alkaline character of the tephrite-phonolite lineage in comparison with the alkali basalt-trachyphonolite lineage (cf. also Fig. 2). In the latter, rock-types with K₂O/Na₂O ratio ≤ 1 are frequent (shoshonitic to Table 6 - Representative whole-rock compositions, recalculated to 100% on anhydrous basis with total Fe as FeO. Original Fe2O3, FeO, L.O.I. and sums are also given.

TRACHY PHONO	18-136B	S487 1.07 1.07 1.07 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	12 12 12 12 12 12 12 12 12 12	0.475 1.10
TRACHY BASALT	17-129	0.1 2.1 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2	52525 52525 52525 52525 525555 5255555 5255555 525555 525555 5255555 5255555 5255555 52555555	950 356
ALT	16-159	6111 1112 1112 1112 1112 1112 1112 1112	160 56 56 56 56 56 1368 308 308 308 308 308 308 308 308 308 30	0.562
XALI BAS	15-130	51.16 1.04 1.04 0.18 0.18 0.03 0.18 0.18 0.18 0.18 0.18 0.27 0.27	106 279 38 38 38 38 38 38 38 38 38 38 38 39 30 30 30 30 30 30 30 30 30 30 30 30 30	0.55 1.05
T	14-248	81 12 12 12 12 12 12 12 12 12 12 12 12 12	335 154 151 151 151 158 158 158 158 158 158 158	0.618
PHONO LITE	13-102	88-1-0 88-1-0 89-10-0 89-10-0 89-10-0 89-10-0 89-10-0 80-0 8	122 222 222 222 222 222 222 222 222 222	0.484 2.27
	12-64	9,22,58 9,22,58 9,22,58 9,58 9,58 9,58 9,58 9,58 9,58 9,58 9	88 22 22 22 22 22 22 22 22 22 22 22 22 2	0.486 1.63
RITE	82-11	9011 102 10310 10312 10012 100100000000	23 23 23 23 23 23 23 23 23 23 20 20 20 20 20 20 20 20 20 20 20 20 20	0.505
NOTEPHI	10-43	8 8 8 8 8 8 8 8 8 8 8 8 8 8	95 88 84 148 1903 1903 1903 272 272 272 272 272 272 272 272 272 27	0.561 1.40
IOHd	9-47	91.16 15.90 15.90 15.90 15.90 15.45 15.55 15.45	77 201 293 203 203 203 203 203 203 203 203 203 20	0.569 1.56
	8-50	4943 15,08 0,16 0,16 0,16 0,16 0,16 4,4 5,18 5,18 5,18 5,18 5,18 5,18 5,18 5,18	107 107 107 107 107 107 107 107 107 107	0.594 1.68
	7-34	454 242 242 242 242 242 242 242 242 242	190 100 100 100 100 100 100 100 100 100	0.558 0.99
	6-3398	88.23 15.11 15.11 15.20	143 28.7 28.7 28.7 28.7 28.4 11 12.4 12.4 12.4 12.4 12.4 12.4 12.4	0.612 1.55
HRITE	5-111	50.23 1.62 1.62 0.14 0.15 0.14 0.18 0.18 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.3	476 476 108 108 110 110 110 110 128 258 258 258 258 258 258 258 258 258 2	0.627 1.73
TEP	4-3380	5046 1224 1224 1225 1224 1224 1224 1224 1224	275 285 286 286 285 285 285 285 285 285 285 285 285 285	0.628 0.88
	3-113	2:29 131 131 131 131 131 131 131 131 131 13	338 86 1904 1915 1915 1917 1917 1917 1917 1917 1917	0.652
	2-176	51.16 1.136	485 1137 1139 1166 1122 1223 1223 1223 1223 1223 1223	0.675 1.85
AINETTE	1-3088	89202 8120 8120	355 355 124 128 128 128 1265 1265 1265 1265 1259 1259 1259 1259 1259 1259 1259 125	0.718 1.32
4		200 200 200 200 200 200 200 200 200 200	⋳⋍ ⋦⋓∊⋗⋩⋧⋳⋟⋦⋦⋦⋹⋗⋩⋽	mg [#] K ₂ ONa ₂ O

mg# calculated assuming Fo2 O4 /FeO=0.175.

Fig. 7. Sapucai dykes (shaded areas) in the TAS and K_2O-SiO_2 diagrams, as from LeMaitre (1989) and from Beccaluva et al. (1991), respectively. Symbols are for the representative analyses of Table 6 (De La Roche's nomenclature is maintained, minette excepted).

latitic rock-types, according to Le Maitre, 1989).

In general, Mg-values (Mg#), as well as Ni and Cr contents are relatively low and even in those rocktypes where Mg# is in the range of the primitive, mantle-derived magmas (Mg#=0.63-0.73, according to Green, 1971), the Ni ranges between 66 and 154 ppm, 235-400 ppm being the content inferred for primitive magmas (Sato, 1977). Therefore all the magma-types representative of the less evolved dykes in the Sapucai area can be considered to some extent to be derivative (cf. Table 6), similar to the Roman Region rock-types (Civetta et al., 1987: high-K suite, Mg#=0.60-0.70, Cr+Ni 161-369 ppm; low-K suite, Mg-value=0.51-0.67, Cr+Ni=43-319).

The tephrite-phonolite lineage displays higher TiO_2 , K_2O , Zr, Nb, Y and REE contents than those shown by the alkali basalt-trachyphonolite lineage (Table 6). However, variation diagrams, assuming Mg# as differentiation index (Fig. 8), show very

scattered values and the observed trends, in particular those relative to the tephrite clan, are not indicative of fractional crystallization processes.

Crystal fractionation

Modeling of crystal fractionation involving ten oxide components was performed using the leastsquares program XLFRAC (Stormer and Nicholls, 1978). All phases which occur in the assumed parent magmas (i.e. those with the highest Mg# and Cr+Ni contents) were considered as fractionating phases, including olivine in the minette, because its absence can be the consequence of a reaction relationship with decreasing temperature involving phlogopite and liquid (Luth, 1967; Barton and Hamilton, 1979).

Models with very low sums of the squared residuals (Σ Sr²<0.5) relative to alkali basalt-trachyphonolite lineage indicate that the most evolved alkali basalt, trachybasalt and trachyphonolite could be the products of crystal fractionation of olivine+clinopyroxene+plagioclase+magnetite. The trace element modeling (Rayleigh's equation) show that the incompatible elements have calculated/observed ratios generally in the range 0.7–1.30, but Zr and Y display scattered ratios (0.51–1.02 and 0.3– 1.85, respectively), probably reflecting different K_D values and the analytical error in low concentrations (Table 6).

The same approach for the *tephrite-phonolite* lineage shows that the dominant fractionating assemblages are olivine+clinopyroxene \pm phloge pite \pm leucite \pm alkali feldspar ($\Sigma r^2 = 0.10-1.95$) with consequent variable SiO₂ depletions and enrichments in the derivative melts (cf Fig. 8) which evolved in the Mg₂SiO₄-KAlSiO₄-SiO₂-H₂O volume (cf. Hamilton and MacKenzie, 1965; Luth, 1967), as indicated also by the mineralogical features. This is also consistent with different f_{O_2} and a_{H2O} regimes, expanding the phlogopite volume and suppressing leucite at relatively low pressures (Wallace and Carmichael, 1989; MacDonald et al., 1992).

The scattered calculated/observed ratios relative to the incompatible trace elements are indicative of a more complex typology, i.e. variations of O_2 and H_2O activities, crystal/liquid mixing from distinct magma batches, complex zoning and resorption in mixed potassic magmas, clinopyroxene, foids and/

Fig. 8. Mg/(Mg+Fe²⁺), Mg# (Fe₂O₃/FeO=0.175) vs. major (wt. %) and trace (ppm) elements variation diagrams for the selected rock-types. Symbols as in Fig. 7. Shaded areas outline the fields from alkali basalt-trachyphonolite lineage.

or phlogopite cumulus, leucite breackdown into pseudoleucite and/or analcimization at low pressure regimes (cf. O'Brien et al., 1988).

Petrogenesis

From the evidence above, the two main lineages of the Sapucai dykes are probably related to distinct parental magmas. Assuming that the least evolved compositions represent derivative liquids, we need to consider compositions with Mg# e.g. between 0.76 and 0.79 (Fo 0.91–0.92 for equilibrium olivine and Ni contents>240 ppm). Possible compositions are obtained by adding c. 25 wt. % clinopyroxene + olivine (4:1) and 30 wt. % clinopyroxene + olivine (2:1) to minette (Mg# 0.72) and to tephrite (Mg# 0.68) of Table 6, respectively, and 30% clinopyroxene + olivine + plagioclase (6:3:1) to alkali basalt (Mg# 0.62).

Moreover, assuming a garnet peridotite as mantle source (cf Comin-Chiaramonti et al., 1991), for the low Y contents of the observed and calculated magmas and for strong fractionation between LREE and HREE (and because the spinel peridotite sources indicate melt degree less than 1.5%, up to 0.1%), the melting models (Hanson, 1978) show melt degrees in the ranges 3–7% and 4–7% for the tephrite/minette and alkali basalt clan, respectively, and residual garnet and amphibole in the ranges 2–5% and 0–1%. The model also shows important enrichments and depletions in the mantle source(s) with respect to the primordial mantle of Wood et al. (1979), i.e., *(i) tephrite-phonolite lineage*: Rb, 4–8; Ba, 5–7.5; K, 4–8; Nb, 3.5–6; La, 4–6; Ce, 3.5–5.5; Sr, 2–2.5. P, 1.5–2.5; Zr, 1.5–2.0; Ti, 0.5–1; Y, 0.4–0.7;

(2) alkali basalt-trachyphonolite lineage: Rb, 2.5-4; Ba, 5; K, 3.5-4; Nb, 3.5-4; La 3.5-5; Ce, 2.5-3; Sr 2.5-3; P, 1.5; Zr, 1.5-1.7; Ti 0.8; Y, 0.5-0.7.

Notably, garnet peridotite sources are also inferred by melting models for the Mesozoic tholeiitic basalts of Serra Geral Formation (melting degrees: high-Ti basalts, 5–9%; low-Ti basalts, 20%; Piccirillo and Melfi, 1988) and for the Tertiary nephelinites of the Asunción area (melting degrees: 3-6%; Comin-Chiaramonti et al., 1991).

Incompatible element enrichment may be broadly associated with metasomatic processes involving fluids and/or small volume melts (e.g. Menzies et al., 1987; Erlank et al., 1987). Whatever the origin of these fluids, the source was probably in the deeper parts of the lithosphere or upper asthenosphere and such fluids were likely derived from volatile-rich alkaline melts.

Geodynamic significance

The magmatism of the Asunciòn-Sapucai graben is an example of potassic volcanism in an intracontinental rifting. In general, Ba and Sr contents of the dykes (Table 6) are relatively high, as might be expected from the potassic character of the dykes. However, not all incompatible elements show enrichments: thus Nb is up to 62 ppm in A-phonolite (Mg# 0.48). As a result, the ratio of large ion litophile element/high field strenght element (LILE/ HFSE) is high: hygromagmatophile element patterns, normalized to primordial mantle (Fig. 9) show strong LILE/HFSE fractionation and negative Ta, Nb, P, Zr, Ti spikes, interpreted by some (e.g. Edgar, 1980; Pearce, 1983: Thompson et al., 1984; Beccaluva et al., 1991) in terms of subduc-

Fig. 9. Primordial mantle-normalized element abundance for the tephrite-phonolite (T-PT) and alkali basalt-trachyphonolite (AB-TB) lineages, respectively (shaded areas). Normalizing values are from Wood et al., 1979. The averaged compositions of "high potassic", RRTL(HK) and "potassic", RRTL(K) suites, respectively, from Roman Region lavas are drafted for comparison (source of data: Civetta et al., 1987; Beccaluva et al., 1991).

Fig. 10. 100Th/Zr and 100Nb/Zr ratios (after Beccaluva et al., 1991: fig. 8, modified) showing the fitting of the selected analyses (Table 6; symbols as in Fig. 7) and the field of the Sapucai dyke swarm (dashed field: this work and unpublished data).

tion-related processes. The close similarity with generalized patterns for the Roman Region lavas (Barton, 1979; Civetta et al., 1987) is notable.

The Sapucai compositions are distinct from the field of Ugandan rocks and scatter around the field of Roman Region lavas also in the Th/Zr vs. Nb/Zr diagram (Fig. 10). Also, they fall in a distinct

field, intermediate between the latter and basaltic compositions unrelated to subduction (BCUS), in the Th/Yb vs. Ta/Yb diagram (Fig. 11). Notably, the dykes from Sapucai swarm are on trend with the tholeiitic basalts of the Serra Geral Formation, both groups being distinct from the BCUS. This suggests that the chemical characteristics of the Sapucai dykes may be due to a metasomatized mantle source with Nb-Ta bearing residual phases. This can explain the relatively high and constant ⁸⁷Sr/⁸⁶Sr initial ratios (av. 0.70717±0.00030 at 128 Ma: Velazquez et al., 1992) without intervention of substantial crustal contamination, as also shown by low $\delta^{18}O$ % (V-SMOW) of mica (+4.85 to +5.54), clinopyroxene (+5.09 to +5.20) and whole-rocks (+5.45 to +5.91), according to Marzoli (1991) and by $\delta 13C$ % (PDB-1) of the scarce carbonate phases present in the groundmass of the dykes (-5.6 to -6.5; Censi, unpublished data).

Finally, preliminary data relative to the $(87\text{Sr}/86\text{Sr})_0$ (R_0) vs. measured ¹⁴³Nd/¹⁴⁴Nd variations (Velazquez et al., 1992), show that the lower Cretaceous alkaline magmatism (0.70696±0.00011 vs. 0.51193±0.00003) of the Asunciòn–Sapucai area is related to mantle sources isotopically distinct from

Fig. 11. Th/Yb versus Ta/Yb diagram: *TH*, tholeiitic, *CA*, calc-alkaline, *SHO*, shoshonitic boundaries for arc basalts (Pearce, 1983); *RRTL*, Roman Region type lavas; *L-Ti* and *H-Ti*, low- and high-Ti tholeiites of the Central-Western Paranà basin (source of data: Civetta et al., 1987; Marques et al., 1989; Beccaluva et al., 1991; this work and unpublished data). Symbols as in Fig. 7.

those of the adjoining tholeiitic flood basalts to the East (Ybyturuzù-Ciudade de Leste area, age 130 Ma; ($R_0 = 0.70587 \pm 0.00009$, ¹⁴³Nd/¹⁴⁴Nd = 0.51253 \pm 0.00016: Marques et al., 1989) and from those of the Tertiary ultrasodic magmatism of the adjoining Asunciòn area (age 61-39 Ma; $R_0 = 0.70374 \pm 0.00010$, ¹⁴³Nd/¹⁴⁴Nd = 0.51274 \pm 0.0006), the latter also showing pronounced positive Nb spikes (Comin-Chiaramonti et al., 1991a).

The high R_0 values relative to Serra Geral tholeiites (i.e. $R_0 \ge 0.706$) were interpreted (Hawkesworth et al., 1986; Macciotta et al., 1990) as the continental extension of the Dupal anomaly, presumably by subduction in a previous orogenic event. Piccirillo et al. (1989, 1990) showed that the tholeiitic basalts, at the Central-Western Paranà Basin, display negligible crustal contamination; moreover, the outpouring of rock-types with low R_0 (≤ 0.704) in the Asunción area would imply the existence of a very thin subduction slab affecting only the potassic magma sources (i.e. $R_0 = 0.707$).

Therefore, the magma production in an area relatively narrow in time and space, reflects more probably lithospheric sources where compositional heterogeneities can be preserved.

Conclusions

The mineral chemistry of the Sapucai dyke assemblages revealed several genetic aspects bearing on the mutual relationships of the corresponding liquids and confirmed established similarities shared by metaluminous potassic lavas from apparently different tectonic regimes, notably the Roman Region. In conclusion, the mineralogy of the Sapucai dykes delineates at least two magma types represented by the *tephrite to phonolite* and *alkali-basalt to trachyphonolite* lineages, or alternatively, to an independent peralkaline forerunner. Transition from peralkaline to metaluminous assemblages may have occurred by interaction of chemically distinct magma batches crystallizing under different f_{O_2} conditions.

The two main lineages are confirmed by the geochemical trends, probably reflecting different meteromatized mantle sources in the lithosphere.

A strong geochemical affinity has emerged butween the Sapucai and the leucite-bearing lavas from the Roman Region. While the geodynamic significance of this relationships cannot as yet be elucidated in the light of the incomplete petrological and geochemical data on the Sapucai province, it is clear that Roman Region type magma (Barton, 1979) occurs in a rifted continental setting devoid of orogenic and/or subduction-driven activity. Therefore, a causal relationships of the latter activity with Roman Region type magma is not supported and remains questionable.

Acknowledgements

We thank Dr. B. Upton and Dr. P. Bitschene for the suggestions to improve the paper. Financial support from Brazilian (CNPq, FAPESP and FI-NEP) and Italian (CNR and MURST) agencies is gratefully acknowledged. We would like to express our thank to Prof. G. Garbarino for assistance in microprobe analyses and to Prof. R.Alaimo for the facilities in the use of Perkin-Elmer mass spectrometer.

References

- Alaimo, R. and Censi, P., 1992. Quantitative determination of major, minor and trace elements in U.S.G.S. rock standards by inductively coupled plasma mass spectrometry. Atom. Spectrosc., in press.
- Barbieri, M., Peccerillo, A., Poli, G. and Tolomeo, L., 1988. Major, trace elements and Sr isotopic composition of lavas from Vico volcano (Central Italy) and their evolution in an open system. Contrib. Mineral. Petrol., 99: 487–497.
- Barton, M., 1979. A comparative study of some minerals occurring in the K-rich alkaline rocks of the Leucite-hills, Wyoming, the Vico Vulcano, Italy, and the Toro-Ankole Region, Uganda. Neues Jahrb. Mineral. Abh., 137: 113-134.
- Barton, M. and Hamilton, D.L., 1979. The melting relationships of a madupite from the Leucite Hills, Wyoming, to 30 Kb. Contrib. Mineral. Petrol., 69: 133-142.
- Beccaluva, L., Di Girolamo, P. and Serri, G., 1991. Petrogenesis and tectonic setting of the Roman Volcanic Province, Italy. Lithos, 26: 191-221.
- Bellieni, G., Brotzu, P., Comin-Chiaramonti, P., Ernesto, M., Melfi, A.J., Pacca, I.G., Piccirillo, E.M. and Stolfa, D., 1983. Petrological and palaeomagnetic data on the Plateau basalt to rhyolite sequences of the Southern Paranà Basin (Brazil). An. Acad. Brasil. Cienc., 55: 355-383.
- Bergman, S.C., 1987. Lamproites and other potassium-rich igneous rocks: a review of their occurrence, mineralogy and geochemistry. In: J.G. Fitton and B.G.J. Upton (Edi-

tors), Alkaline Igneous Rocks. Geol. Soc. London, Spec. Publ., 30: 103-190.

- Bitschene, P., 1987. Mesozoischer und Kanozoischer anorogener magmatismus in Ostparaguay: Arbeiten zur geologie und petrologie zweier Alkaliprovinzen. Ph. D. Dissertation, Heidelberg Univ., 317 pp. (unpubl.)
- Civetta, L., Francalanci, L., Manetti, P. and Peccerillo, A., 1987. Petrological and Geochemical variations across the Roman Comagmatic Province: inference on magma genesis and crust-mantle evolution. Accad. Lincei, 86: 250– 269.
- Comin-Chiaramonti, P., Meriani, S., Mosca, R. and Sinigoi, S., 1979. On the occurrence of analcime in northeastern Azerbaijan volcanics (northwestern Iran). Lithos, 12: 187– 198.
- Comin-Chiaramonti, P., Gomes, C.B., Piccirillo, E.M., Bellieni, G., Castillo, A.M.C., Demarchi, G., Gallo, P. and Velazquez, Y.C., 1990a. Petrologia do Maciço alcalino de Acahay, Paraguay Oriental. Rev. Bras. Geocienc., 20: 133– 152.
- Comin-Chiaramonti, P., Cundari, A., Censi, P., Gomes, C.B., Piccirillo, E.M., Bellieni, G., De Min, A., Orué, D. and Velazquez, V.F., 1990b. Mineral chemistry and its genetic significance of major and accessory minerals from a potassic dyke swarm in the Sapucai graben, Central-Eastern Paraguay. Geochim.Brasil., 4: 175-206.
- Comin-Chiaramonti, P., Civetta, L., Petrini, R., Piccirillo, E.M., Bellieni, G., Censi, P., Bitschene, P., Demarchi, G., De Min, A., Gomes, C.B., Castillo, A.M.C. and Velazquez, J.C., 1991. Tertiary nephelinitic magmatism in eastern Faraguay: petrology, Sr-Nd isotopes and genetic relationships with associated spinel-peridotite xenoliths. Eur. J. Mineral., 3: 507-525.
- Cundari, A., 1975. Mineral chemistry and petrogenetic aspects of the Vico lavas, Roman Volcanic Region, Italy. Contrib. Mineral. Petrol., 53: 129-144.
- Cundari, A., 1979. Petrogenesis of leucite-bearing lavas in the Roman Volcanic Region, Italy. The Sabatini lavas. Contrib. Mineral. Petrol., 70: 9-21.
- Cundari, A., 1982. Petrology of clinopyroxenite ejecta from Somma-Vesuvius and their genetic implications. Tschermaks Mineral. Petrogr. Mitt., 30: 17-35.
- Cundari, A. and Ferguson, A.K., 1982. Significance of the pyroxene chemistry in leucite-bearing and related assemblages. Tschermaks Mineral. Petrogr. Mitt., 30: 189-204.
- Cundari, A. and Mattias, P.P., 1974. Evolution of the Vico lavas, Reman Volcanic Region, Italy. Bull. Volcanol., 38: 98-114.
- Degraff, J.M., 1985. Late Mesozoic crustal extension and rifting on the Western edge of the Paranà basin, Paraguay. Geol. Soc. Am. Abstr. Programs, 17: 560.
- Degraff, J.M., Franco, R. and Orué, D., 1981. Interpretación geofisica y geologica del Valle de Ypacaray (Paraguay) y su formación. Assoc. Geol. Argent., 36: 240-256.
- De La Roche, H., Leterrier, J., Grandclaude, P. and Marchal, M., 1980. A classification of volcanic and plutonic rocks using R1-R2 diagram and major-element analyses. Its relationships with current nomenclature. Chem. Geol., 29: 183-210.
- Druecker, M.D. and Gay, S.P., 1987. Mafic dyke swarms as-

sociated with Mesozoic rifting in Eastern Paraguay, South America. In: H.C. Halls and W.F. Fahrig (Editors), Mafic Dyke Swarms. Geol. Assoc. Canada, spec. publ., 34: 187– 193.

- Edgar, A.D., 1980. Role of subduction on the genesis of leucite-bearing rocks: discussion. Contrib. Mineral. Petrol., 73: 429-431.
- Erlank, A.J., Waters, F.G., Hawkesworth, C.J., Haggerty, S.E., Allsopp, H.L., Rickard, R.S. and Menzies, M.A., 1987. Evidence for mantle metasomatism in peridotite nodules from the Kimberley pipes, South Africa. In: M.A. Menzies and C.J. Hawkesworth (Editors), Mantle Metasomatism. Academic Press, London, pp. 221-329.
- Ferguson, A.K., 1978. Mineral chemistry and petrological aspects of some leucite-bearing lavas from Bufumbira, SW Uganda, and related assemblages. Ph.D. Thesis, Melbourne Univ., 189 pp.
- Ferguson, A.K. and Cundari, A., 1975. Petrological aspects and evolution of the leucite-bearing lavas from Bufumbira, South West Uganda. Contrib. Mineral. Petrol., 50: 25-46.
- Ferguson, A.K. and Cundari, A., 1982. Feldspar crystallization trends in leucite-bearing and related assemblages. Contrib. Mineral. Petrol., 81: 212–218.
- Foley, S.F., Venturelli, G., Green, D.H. and Toscani, L., 1987. The ultrapotassic rocks: Characteristics, classifications and constrains for petrogenetic models. Earth-Sci. Rev., 24: 81– 134.
- Gomes, C.B., Comin-Chiaramonti, P., De Min, A., Melfi, A.J., Bellieni, G., Ernesto, M., Castillo, A.M.C., Velazquez, J.C., Velazquez, V.F. and Piccirillo, E.M., 1989. Atividade filoniana associada ao complexo alcalino de Sapucai, Paraguai Oriental. Geochim. Bras., 3, 93-114.
- Green, D.H., 1971. Composition of basaltic magma as indicators of conditions of origin: Application to oceanic volcanism. Philos. Trans. R. Soc. London, A268: 707-725.
- Hamilton, D.L. and MacKenzie, W.S., 1965. Phase equilibrium studies in the system NaAlSiO₄ (nepheline)-KAlSiO₄ (kalsilite)-SiO₂-H₂O. Mineral. Mag., 34: 214-231.
- Hanson, G.N., 1978. The application of trace elements to the petrogenesis of igneous rocks of granitic compositions. Earth Planet.Sci.Lett., 38: 26-43.
- Hawkesworth, C.J., Mantovani, M.S.M., Taylor, P.N. and Palacz, Z., 1986. Evidence from the Paranà of South Brazil for a continental contribution to Dupal basalts. Nature, 322: 356-359.
- Holm, P.M., 1982. Mineral chemistry of perpotassic lavas of the Vulsini district, the Roman Province, Italy. Mineral. Mag., 46: 379-386.
- Knittel, U. and Cundari, A., 1990. Mineralogical evidence for the derivation of metaluminous potassic rocks from peralkaline precursor: the Cordon syenite complex (Philippines). Mineral. Petrol., 41: 163–183.
- Leake, B.E., 1978. Nomenclature of amphiboles. Am. Mineral., 63: 1023-1052.
- LeMaitre, R.W., 1989. A Classification of Igneous Rocks and Glossary of Terms. Blackwell, Oxford, 193 pp.
- Livieres, R.A. and Quade, H., 1987. Distribución regional y asentamiento tectonico de los complejos alcalinos del Paraguay. Zbl. Geol. Palaontol., Teil, I, H7/8: 791-805.

- Luth, W.C., 1967. Studies in the system KAlSiO₄-Mg₂SiO₄-SiO₂-H₂O: Part 1, Inferred phase relations and petrological applications. J. Petrol., 8: 372-416.
- Macciotta, G.P., Almeida, A., Barbieri, M., Beccaluva, L., Brotzu, P., Coltorti, M., Conte, A., Garbarino, C., Gomes, C.B., Morbidelli L., Ruberti, E., Siena, F. and Traversa, G., 1990. Petrology of the tephrite-phonolite suite and cognate xenoliths of the Fortaleza district (Cearà, Brazil). Eur.J.Mineral., 2: 687-709.
- MacDonald, R., Upton, B.G.J., Collerson, K.D., Hearn, B.C., Jr. and James, D., 1992. Potassic mafic lavas of the Bearpaw Mountains, Montana: Mineralogy, Chemistry and Origin. J. Petrol., 33: 305-346.
- Mariano, A.N. and Druecker, M.D., 1985. Alkaline igneous rocks and carbonatites of Paraguay. Geol. Soc. Am. Abstr. Programs, 17: 166.
- Marques, L.S., Piccirillo, E.M., Melfi, A.J., Comin-Chiaramonti, P. and Bellieni, G., 1989. Distribuiçao de terras raras c outros elementos traços em basaltos da Bacia do Paranà (Brasil Meridional). Geochim. Bras., 3: 33-50.
- Marzoli, A., 1991. Studio petrologico e geochimico di complessi alcalini del rift di Sapucai (Paraguay). Doctoral dissertation, Trieste Univ., 201 pp. (unpubl.)
- Menzies, M.A., Rogers, N.W., Tindle, A. and Hawkesworth, C.J., 1987. Metasomatic and enrichment processes in lithospheric peridotites, an effect of asthenosphere-lithosphere interaction. In: M.A. Menzies and C.J. Hawkesworth (Editors), Mantle Metasomatism. Academic Press, London, pp. 313-359.
- O'Brien, H.E., Irving, A.J. and McCallum, S., 1988. Complex zoning and resorption in mixed potassic magmas of the Highwood Mountains, Montana. Am. Mineral., 73: 1007-1024.
- Palmieri, J.H., 1973. El complejo alcalino de Sapukai (Paraguay Oriental). Ph.D. Diss., Univ. Salamanca, 319 pp. (unpubl.)
- Pearce, J.A., 1983. Role of the sub-continental litosphere in magma genesis at active continental margins. In: C.J. Hawkesworth and M.J. Norr (Editors), Continental Basalts and Mantle Xenoliths. Shiva, Nantwitch, pp. 230-249.
- Piccirillo, E.M. and Melfi, A.J. (Editors), 1988. The Mesozoic Flood Volcanism of the Paranà Basin: Petrogenetic and Geophysical Aspects. IAG-USP, Sao Paulo, 600 pp.
- Piccirillo, E.M., Civetta, L., Petrini, R., Longineili, A., Bellieni, G., Comin-Chiaramonti, P., Marques, L.S. and Melfi, A.J., 1989. Regional variations within the Paranà flood basalts (southern Brazil): Evidence for subcontinental mantle heterogeneity and crustal contamination. Chem. Geol., 75: 103-122.
- Piccirillo, E.M., Bellieni, G., Cavazzini, G., Comin-Chiaramonti, P., Petrini, R., Melfi, A.J., Pinese, J.J.P., Zantedeschi, P. and DeMin, A., 1990. Lower Cretaceous dyke swarms from the Ponta Grossa Arch (southeast Brazil); Petrology, Sm-Nd isotopes and genetic relationships with the paranà flood volcanics. Chem. Geol., 89: 19-48.
- Sato, H., 1977. Nickel content of basaltic magmas: Identification of primary magma and a measure of the degree of olivine fractionation. Lithos, 10: 113-120.
- Spencer, K.J. and Lindsley, D.H., 1981. A solution model for

- Stormer, J.C.Jr. and Nicholls, J., 1978: XLFRAC: A program for interactive testing of magmatic differentiation models. Comput. Geosci., 4: 143–159.
- Thompson, R.N., Morrison, M.A., Hendry, G.L. and Parry, S.J., 1984. An assessment of the relative roles of crust and mantle in magma genesis: an elemental approach. Phil. Trans. R. Soc. Lond. A 310: 549-590.
- Wallace, P. and Carmichael, I.S.E., 1989. Minette lavas and associated leucitites from the Western Front of the Mexican Volcanic Belt: petrology, chemistry, and origin. Contrib. Mineral. Petrol., 103: 470-492.
- Velazquez, V.F., Gomes C.B., Comin-Chiaramonti, P., Petrini, R., Kawashita, K. and Piccirillo, E.M., 1992. Magmatismo alcalino mesozoico na porçao centro-oriental do Paraguai: aspectos geocronologicos. Geochim.Brasil., in press.
- Wones, D.R. and Eugster, H.P., 1965. Stability of biotite: experiment, theory and application. Amer. Mineral., 50: 1228-1272.
- Wood, D.A., Tarney, J., Vret, J., Saunders, A.D., Bougault, H., Joron, J.L., Treuil, M., Cann, J.R., 1979. Geochemistry of basalts drilled in the North Atlantic by IPOD Leg 49: implications for mantle heterogeneity. Earth Planet.Sci.Lett., 42: 77-97.