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 PThis paper presents 14 zircon U–Pb determinations (SHRIMP and LA-MC-ICP-MS) for key geological units from

the Rio Apa Cratonic Terrane (RACT), which is considered the southernmost exposed part of the Amazonian
Craton in southwestern Brazil. The zircon U–Pb ages and geological data indicate that the RACT was formed by
the accretion of magmatic arcs in a continental margin active from 1950 to 1720 Ma. The RACT is composed of
three major terranes (Western, Eastern and Southeastern Terranes) with distinct evolution histories. The
Western Terrane presents orthogneisses and granites formed at ~1950–1940 Ma and subduction-related
granites and volcanic rocks formed at 1900–1880 Ma and 1840–1830 Ma. These basement rocks are covered
by a greenschist facies metavolcano-sedimentary succession (Rio Naicata Formation) with basal volcanic rocks
formed at 1813±18Ma. A gabbronoritic dykeof the Rio Perdido Suite hosted by theRioNaitaca Formation yields
an age of 1589 ± 44 Ma. The Eastern and Southeastern Terranes present deformed leucogranites generated
within the intervals 1780–1720 Ma and 1810–1790 Ma, respectively. Both terranes are covered by a
metavolcano-sedimentary succession (Alto Tererê Formation) dominated by Barrovian-type amphibolite facies
metamorphic assemblages, suggestive of a collisional event. Available 40Ar–39Ar data (hornblende, muscovite
and biotite) indicate that theproto-RACT evolved to a collisional orogenbetween 1310 and1270Ma and behaved
as a cratonic mass after 1270 Ma, preceding the assembly of Rodinia. The available data allow us to interpret the
RACT as a part of the Ventuari–Tapajós Province of the Amazonian Craton, which was fragmented and dispersed
as amicrocontinent. It was subsequently reincorporated into the SWAmazonian Craton, along the Sunsás Belt, as
an allochthonous terrane. In a global perspective, the tectono-magmatic events of the RACT are consistent with a
long-lived accretionary orogen possibly related to an active margin of Columbia.

© 2015 Published by Elsevier B.V. on behalf of International Association for Gondwana Research.
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1. Introduction

The Rio Apa Cratonic Terrane (RACT; Fig. 1) is a composite terrane
that is considered the southernmost exposed part of the Amazonian
Craton in southwestern Brazil (Mato Grosso do Sul State) and northern
Paraguay (Ruiz et al., 2005; Lacerda Filho et al., 2006; Cordani et al.,
2009; Godoy et al., 2009; Cordani et al., 2010a; Manzano et al., 2012;
Brittes et al., 2013; Manzano, 2013; Plens et al., 2013; Teixeira et al.,
2013). Thus, its evolutionary history is relevant to the reconstruction
of the Gondwana and Rodinia supercontinents. The RACT–Amazonia
connection is largely based on the positions of the Neoproterozoic
Brasiliano/Pan African belts (Almeida and Hasui, 1984) and on the
interpretation that the Tucavaca Belt, a Brasiliano feature that separates
72

73

74
iversidade de São Paulo, Brazil.
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ian ..., Gondwana Research (2
the RACT from the Amazonian Craton (Fig. 1), represents an
aulacogenic feature (Brito Neves et al., 1985; Ávila-Salinas, 1992;
Cordani et al., 2009, 2010a). Although the RACT-Amazonia connection
within Gondwana is generally accepted, the pre-Gondwana relation-
ship between these geotectonic entities is not yet properly understood.

Geochronological and geological data suggest that the RACT
comprises a fragment of an Orosirian to Statherian active continental
margin that was subsequently deformed and metamorphosed in a
1310–1270 Ma collisional event (Lacerda Filho et al., 2006; Cordani
et al., 2010a; Manzano et al., 2012; Brittes et al., 2013; Manzano,
2013; Plens et al., 2013; Pavan and Faleiros, 2014). 40Ar–39Ar data
(muscovite and biotite) indicate that the RACT behaved as a cratonic
mass after 1310–1270 Ma (Cordani et al., 2010a) and was unaffected
by tectonothermal events related to the assembly of Rodinia
(ca. 1200–1000 Ma) and Gondwana (ca. 650–500 Ma). In this scenario,
the role of prominent structures related to the Grenvillian Orogeny
ana Research.

rom the Rio Apa Cratonic Terrane (Mato Grosso do Sul, Brazil): New
015), http://dx.doi.org/10.1016/j.gr.2015.02.018
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Fig. 1. Tectonic framework of part of South America with emphasis on the Amazonian Craton and its tectonic provinces: (a) adapted from Cordani et al. (2009), (b) adapted from
Bettencourt et al. (2010), taking into account data from Hasui and Almeida (1970), Tohver et al. (2004), Vargas-Mattos et al. (2010), Rizzotto et al. (2013) and this work. Also shown is
the location of Fig. 2.
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R
R(1200–1000 Ma) (the Sunsás, Aguapeí and Nova Brasilândia Belts;

Sadowski and Bettencourt, 1996; Geraldes et al., 1997, 2001; Loewy
et al., 2004; Tohver et al., 2004; Boger et al., 2005; Tohver et al., 2005a,
b, 2006; Teixeira et al., 2010; Geraldes et al., 2014; Rizzotto et al.,
2014) and the Rondonian–San Ignacio Orogeny (1560–1300 Ma) (the
Guaporé Belt; Bettencourt et al., 2010; Rizzotto et al., 2013, 2014) are
key issues that need to be addressed to securely establish the relation-
ship between the RACT and the Amazonian Craton in pre-Gondwana
times. Most authors consider the Sunsás Belt as a major suture zone
related to the collision between the proto-Amazonian Craton and the
Arequipa–Antofalla Terrane (Sadowski and Bettencourt, 1996; Loewy
et al., 2004; Boger et al., 2005; Cordani et al., 2010b; Teixeira et al.,
2010; Rizzotto et al., 2014), while others interpret it as an intra-
continental belt (Santos et al., 2000, 2008). The role of the Nova
Brasilândia Belt is also contentious, being inferred as the collisional
suture zone between the Paraguá Terrane and the proto-Amazonian
Craton (Tohver et al., 2004, 2005a,b, 2006; Boger et al., 2005) or as an
intracontinental belt (Santos et al., 2000, 2008; Teixeira et al., 2010;
Rizzotto et al., 2014). Rizzotto et al. (2013, 2014) interpret the collage
between the Paraguá Terrane (Fig. 1) and the proto-Amazonian Craton
to have occurred between 1430 and 1340 Ma along the Guaporé Belt.

In addition to Rodinia and Gondwana, the age (1950–1750 Ma) and
tectonic setting of magmatic events recorded in the RACT basement
(Lacerda Filho et al., 2006; Cordani et al., 2010a; Brittes et al., 2013;
Plens et al., 2013) make its evolutionary history potentially relevant to
the reconstruction of the Columbia supercontinent (Meert, 2002;
Please cite this article as: Faleiros, F.M., et al., Zircon U–Pb ages of rocks f
insights for its connection with the Amazonian ..., Gondwana Research (2
Rogers and Santosh, 2002; Zhao et al., 2002, 2004, 2011; Roberts,
2012, 2013; Meert, 2014). However, this history has not been taken
into account in recent Columbia reconstructions based on paleomagnet-
ic data (Bispo-Santos et al., 2008, 2012, 2014a,b). The only exception is
the Columbia reconstruction presented by Teixeira et al. (2013), where
the RACT appears in a marginal position, suggesting that it was part of
the proto-Amazonian Craton at ca. 1790 Ma.

The tectonic evolution of the RACT is reviewed by Cordani et al.
(2010a). New data were recently obtained from systematic geological
mapping at a 1:100,000 scale (Remédio et al., 2013; Faleiros et al.,
2014; Pavan et al., 2014; Pinto-Azevedo et al., 2014). These data enable
refinement of our understanding about the tectonic evolution of the
RACT, with implications for the evolution of Proterozoic super-
continents (Columbia and Rodinia). In this paper we report 14 zircon
U–Pb data obtained from magmatic rocks of different units from the
RACT, eight analyses performed by sensitive high-resolution ion micro-
probe (SHRIMP), and six analyses by laser ablation-multicollector-
inductively coupled plasma mass spectrometry (LA-MC-ICP-MS).
These robust geochronological data were used to: (i) contribute to
the recognition of terranes with distinct evolution histories prior to
amalgamation of the RACT; (ii) understand the relationships between
granitoids and supracrustal rocks that present ambiguous contact
relationships; (iii) better recognize distinct magmatic events and their
tectonic implications; and (iv) contribute to the understanding of the
RACT–Amazonia connection history in pre-Gondwana times. The results
from this work also aid in our understanding of Paleo-Mesoproterozoic-
rom the Rio Apa Cratonic Terrane (Mato Grosso do Sul, Brazil): New
015), http://dx.doi.org/10.1016/j.gr.2015.02.018
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aged accretionary processes and the formation of the Columbia and
Rodinia supercontinents.

2. Geological setting

Outcrops of theRACT are poor and are typically coveredbyQuaternary
sediments of the Pantanal Formation (Fig. 2). The RACT extends from
Mato Grosso do Sul State in southwestern Brazil to northern Paraguay.
It presents a N–S-trending peninsular shape, with its eastern–
southern–southwestern margins covered in an erosive unconformity
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by anEdiacaran cratonic cover of equivalent units, namely, the Corumbá
Group (Boggiani, 1997; Campanha et al., 2011) in Brazil and the
Itapucumi Group (Warren, 2011; Warren et al., 2011) in Paraguay.
The Corumbá and Itapucumi Groups consist of a 400–700-meter-thick
successionwith conglomerate, sandstone and pelite at the base, passing
into dolomite, limestone and carbonaceous pelite on top, and finally
covered by a thick pelitic package (Boggiani, 1997; Campanha et al.,
2011; Warren, 2011; Warren et al., 2011). A sample of tuff from the
Corumbá Group yields a zircon U–Pb SHRIMP age of 543 ± 2 Ma,
interpreted as the time of crystallization of the rock and of the
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sedimentation of the Corumbá Group (Babinski et al., 2008). The
Corumbá Group shows an easterly increase in intensity of deformation
and metamorphism due to the activity in the southern Paraguay Belt,
which evolved as a typical fold-and-thrust beltwithwestward vergence
(Campanha et al., 2011). In its eastern portion, the Corumbá Group
covers the Cuiabá Group, which is dominated by metapelites (phyllite
and schist) inferred as of turbiditic origin (Boggiani, 1997). The west-
ernmost portion of the Itapucumi Group in Paraguay was deformed
andmetamorphosed in theVallemi Belt. The Vallemi Belt shows a struc-
tural vergence opposite that of the Paraguay Belt (Campanha et al.,
2010; Warren, 2011). The Vallemi Belt is very poorly exposed, being
largely covered by Quaternary sediments equivalent to the Pantanal
Formation (Warren, 2011).

The relationship between the RACT and the Amazonian Craton is
obscured due to the Ediacaran and Phanerozoic covers (Fig. 1). Further-
more, the tectonic significance of the Grenvillian-age belts (Sunsás,
Aguapeí and Nova Brasilândia) is the main limiting factor for possible
reconstructions. Based on the geochronology and tectonic setting of
granitic magmatism, Cordani et al. (2010a) correlate the RACT with
the Rio Negro–Juruena Province of the Amazonian Craton (Tassinari
and Macambira, 1999). The available geological data raise two other
possibilities: (i) the RACT is a prolongation of the Paraguá or Jauru
Terranes, or (ii) the RACT was juxtaposed with the Paraguá and Jauru
Terranes along the Sunsás Belt as an allochthonous terrane. The first
two hypotheses are favored by the models where the Sunsás, Aguapeí
and Nova Brasilândia Belts are interpreted as intracontinental features
(Santos et al., 2000, 2008; Rizzotto et al., 2014). In contrast, the third hy-
pothesis is favored bymodelswhere the Sunsás and/or Nova Brasilândia
Belts are inferred as collisional suture zones (Sadowski and Bettencourt,
1996; Loewy et al., 2004; Tohver et al., 2004; Boger et al., 2005; Tohver
et al., 2005a,b, 2006; Teixeira et al., 2010). The question of interrela-
tionships between the Grenvillian-age belts is also contentious, and
it has implications for possible tectonic reconstructions. Tohver et al.
(2004, 2005a, 2005b, 2006) interpret the Nova Brasilândia Belt as a
2000-km-long suture zone (Fig. 1), and they consider the Aguapeí
Belt as an independent intracontinental structure. In contrast, Boger
et al. (2005) interpret the two structures as segments of a continuous
collisional belt. Geological and geochronological data (Saes, 1999;
Geraldes et al., 2001; Matos et al., 2004; Tohver et al., 2004, 2006;
Ruiz et al., 2005; Rizzotto et al., 2013, 2014) suggest that the Paraguá
and Jauru Terranes behaved as a single continent after ca. 1300Ma, fa-
voring an intracontinental origin for the Aguapeí Belt. Furthermore,
Rizzotto et al. (2013) present evidence that the Paraguá and Jauru
Terranes were juxtaposed along the Guaporé Belt (Fig. 1), a feature
that evolved from an accretionary to a collisional orogen from 1470–
1430 Ma to 1430–1340 Ma, respectively.

The granitic basement that outcrops at the Corumbá adjacencies is
commonly considered the northernmost exposed portion of the RACT
(Fig. 1). This basement presents K–Ar ages of 1730 ± 22 Ma (biotite)
and 889 ± 44 Ma (K-feldspar) (Hasui and Almeida, 1970). These data
indicate that this basement has not undergone tectonothermal effects
related to the Rondonian–San Ignacio event (1560–1300 Ma), and it
was possibly slightly affected by the late Sunsás event, as the closure
temperature of K-feldspar to the argon system can be as low as 150 °C
(Lovera et al., 1989).

Casquet et al. (2009, 2012) interpret the RACT to be part of another
cratonic mass (Mara Craton) during the Paleoproterozoic, and it was
attached to the Amazonian Craton through the Rondonian–San Ignacio
Orogen. The Mara Craton would be made up of the Maz Terrane
(Western Sierras Pampeanas, Argentina), the Arequipa Terrane (Peru)
and theRACT (Brazil andParaguay). Thismodel also implies the absence
of Grenvillian-age suture zones in the SW Amazonian Craton.

Fig. 2 shows an updated geological map of the RACT that incorpo-
rates information of maps at the 1:100,000 scale (Remédio et al.,
2013; Faleiros et al., 2014; Pavan et al., 2014; Pinto-Azevedo et al.,
2014). The RACT is primarily composed of Paleoproterozoic rocks
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divided into four main lithological conjuncts: granitic gneisses,
undeformed to slightly deformed granites, metavolcano-sedimentary
successions, and metavolcanic successions. Based on Nd–Sr isotopic
and U–Pb geochronological data, Cordani et al. (2010a) demonstrate
that the RACT is composed of two major terranes with distinct evolu-
tionary histories (Western and Eastern Terranes). We recognized a
third terrane, defined as the Southeastern Terrane (Fig. 2). TheWestern
and Eastern Terranes are separated by the Aldeia Tomázia shear zone, a
top-to-west low-angle thrust zone responsible for placing slightly
deformed lower greenschist facies rocks (Western Terrane) and highly
deformed amphibolite facies rocks (Eastern Terrane) side by side. The
Eastern and Southeastern Terranes present the same metamorphic
and deformational patterns and are separated by the Serra do Perdido
dextral strike-slip shear zone (Fig. 2). A mafic dyke swarm (Rio Perdido
Suite; Lima et al., 2012) intruded all of the units of the RACT. There are
no geochronological data for this dyke swarm. However, although un-
deformed, part of the dyke swarm was metamorphosed, suggesting a
minimal age of ca. 1300 Ma (40Ar–39Ar data of Cordani et al., 2010a,
2010b, obtained on regionally metamorphosed units, Fig. 2).

2.1. Western Terrane

The Western Terrane is composed of gneissic and granitic rocks of
the Porto Murtinho Complex, which was intruded by granitic rocks of
the Chatelodo Granite and the Alumiador Suite and recovered by
volcanic and pyroclastic rocks of the Serra da Bocaina Formation
(Cordani et al., 2010a). We recognize two units related to the Porto
Murtinho Complex: Córrego Jibóia Gneiss (gray mylonitic orthogneiss
of monzogranitic protolith) and Morro da Lenha Granite (undeformed
green porphyritic monzogranite) (Fig. 2). No geochronological data
are available for the PortoMurtinho Complex, but aminimumOrosirian
age is indicated by the crystallization age of the Alumiador Suite (zircon
U–Pb SHRIMP age of 1839 ± 33 Ma; Cordani et al., 2010a, 2010b)
and of the volcanic rocks of the Serra da Bocaina Formation (zircon
Pb-evaporation age of 1877 ± 4 Ma; Brittes et al., 2013). The Morro
do Triunfo Gabbro is composed of dark-gray, medium-grained olivine
gabbro, of which there are no data indicative of the crystallization age.

The Alumiador Suite comprises a series of undeformed to slightly
deformed granitic plutons (Fig. 2) inferred to be part of an Orosirian
magmatic arc (Lacerda Filho et al., 2006; Cordani et al., 2010a, 2010b).
The most expressive and best studied pluton is the Alumiador Granite, a
batholith with ellipsoidal shape (72 km-long and 20 km-wide), N–S ori-
entation and approximately 800 km2 of outcropping area. The Alumiador
Granite is primarily composed of inequigranular hornblende-biotite
monzogranite with a high-K calc-alkaline signature (Lacerda Filho
et al., 2006; Manzano et al., 2012; Manzano, 2013) and a zircon U–Pb
SHRIMP age of 1839 ± 33Ma (Cordani et al., 2010a). Recent geological
mapping and geochemical analyses indicate plutons with distinct pet-
rological characteristics, including syncollisional signatures (Manzano
et al., 2012; Manzano, 2013) and alkaline signatures of extensional
settings (Pinto-Azevedo et al., 2014). The Alumiador Suite presents an
average Nd TDM model age of 2.52 Ga and an εNd(t) between −5.91
and −2.86, suggesting the presence of reworked crustal material to
the magma source (Cordani et al., 2010a).

The Serra da Bocaina Formation is composed of acid and subordinate
intermediate volcanic rocks classified as rhyolite and andesite, with a
medium- to high-K calc-alkaline geochemical signature of volcanic arc
settings (Godoy et al., 2010; Brittes et al., 2013). Many authors consider
the Serra da Bocaina Formation to be the volcanic equivalent of the
Alumiador Suite (e.g., Godoi et al., 2001; Lacerda Filho et al., 2006;
Godoy et al., 2009, 2010; Manzano et al., 2012), an event named the
Amoguijá Magmatic Arc (Lacerda Filho et al., 2006). Nevertheless, the
available geochronological data (Cordani et al., 2010a, 2010b; Brittes
et al., 2013) indicate that the Serra da Bocaina Formation is at least
40 Ma older than the Alumiador Granite and, thus, could not have
been its volcanic equivalent.
rom the Rio Apa Cratonic Terrane (Mato Grosso do Sul, Brazil): New
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The rocks of the Porto Murtinho Complex and the Alumiador
Suite are partially covered by a meta-volcano-sedimentary succession
named the Rio Naitaca Formation (Faleiros et al., 2013). Previously,
this unit belonged to the Alto Tererê Formation (Cordani et al., 2010a,
2010b; Remédio et al., 2014). We propose restricting the Alto Tererê
Formation to the supracrustal rocks that cover the Eastern and
Southeastern Terranes. The Rio Naitaca Formation is composed of
low-grade siliciclastic metasedimentary rocks, including meta-
sandstone, meta-arkose, meta-wacke, slate and phyllite, and subordi-
nate metavolcanic and pyroclastic rocks. The Rio Naitaca Formation is
regionally metamorphosed under lower greenschist facies conditions
(chlorite zone), locally reaching middle greenschist facies conditions
(biotite zone). The observed contact relationships with the rocks of
the Porto Murtinho Complex are of a tectonic nature.
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2.2. Eastern Terrane

The Eastern Terrane is composed of mylonitic orthogneisses
(Morraria Gneiss and Caracol Gneiss) and undeformed to slightly
deformed granites of the Baia das Garças Suite (Cordani et al., 2010a).
The Morraria Gneiss is composed of gray banded gneiss with common
intercalations of amphibolite lenses. The Morraria Gneiss has a zircon
U–Pb SHRIMP age of 1950 ± 23Ma (Cordani et al., 2010a). The Caracol
Gneiss comprises pinkish leucocratic granitic gneisses with a zircon
U–Pb SHRIMP age of 1774 ± 26 (Cordani et al., 2010a). Major and
trace element whole-rock geochemical analyses obtained in rocks
from the Morraria and Caracol Gneisses indicate subduction-related
calc-alkaline signatures (Lacerda Filho et al., 2006). However, whole-
rock geochemical analyses (major and trace elements) obtained by
Remédio et al. (2014) on rocks of the Caracol Gneiss are dominated by
evolved alkaline signatures of extensional settings (Type A-like affini-
ty). Samples of the Caracol Gneiss exhibit Nd TDM model ages between
1.97 and 2.23 Ga and εNd(t) from −1.94 to +0.97, suggesting juvenile
magma sources with some contribution of reworked crustal material
(Cordani et al., 2010a).

The Baia das Garças Suite presents zircon U–Pb SHRIMP ages of
1754 ± 49 Ma and 1721 ± 25 Ma, an average Nd TDM model age of
2.02 Ga and a slightly positive εNd(t), suggesting that juvenile sources
were dominant for the magmatism (Cordani et al., 2010a). Major and
trace element geochemical data available for the Sanga Bonita, Espinilho
and Santa Clarinha plutons (Fig. 2), correlated to the Baia das Garças
Suite, indicate subduction-related, high-K, calc-alkaline signatures
(Remédio et al., 2014). The Cerro Porã Granite is an elongated pluton
occurring at the southwestern margin of the Eastern Terrane, which
presents alkaline geochemical signatures of extensional settings and a
zircon U–Pb SHRIMP age of 1749 ± 45 Ma (Plens et al., 2013).
379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397
U
N
C

2.3. Southeastern Terrane

The Southeastern Terrane is composed of two granitic units (Rio da
Areia AugenGneiss and ScardineGranite) that intruded a banded biotite
gneiss of monzogranitic composition (Remédio et al., 2014), named
here the João Cândido Gneiss. The Rio da Areia Augen Gneiss was
intensely deformed during a regional tectono-metamorphic event,
while the Scardine Granite was only locally deformed during the same
event. Geochemical analyses carried out in rocks from the João Cândido
Gneiss indicate coexisting signatures of the high-K calc-alkaline and al-
kaline series, suggesting a post-collisional to anorogenic environment
(Remédio et al., 2014). The Rio da Areia Augen Gneiss is dominated by
porphyroclastic mylonitic monzogranite with a geochemical signature
of syncollisional high-K calc-alkaline magma series, while the Scardine
Granite is dominated by undeformed coarse- to medium-grained
equigranular granite with a geochemical signature of the alkaline series
of extensional settings (Remédio et al., 2014).
Please cite this article as: Faleiros, F.M., et al., Zircon U–Pb ages of rocks f
insights for its connection with the Amazonian ..., Gondwana Research (2
E
D
 P

R
O

O
F

2.4. Alto Tererê Formation

The Alto Tererê Formation is a supracrustal rock unit that partially
covers the Western, Eastern and Southeastern Terranes (Fig. 2). It is
dominated by medium-grade siliciclastic metasedimentary rocks,
including garnet quartzite, feldspathic quartzite and garnet-mica schist,
with subordinate lenses of amphibolite. The stratigraphic position of the
Alto Tererê Formation has been a matter of debate due to ambiguous
contact relationships with adjacent units, with extensive overprinting
by intense shearing. The unit was inferred as a sedimentary cover of
basement gneisses and granites based on the apparent stratigraphic
stacking (Corrêa et al., 1976; Nogueira et al., 1978; Correia Filho et al.,
1981; Godoi et al., 2001) or as the oldest unit of the RACT (Lacerda
Filho et al., 2006). Lacerda Filho et al. (2014) present a zircon U–Pb
age of 1768 ± 6 Ma for a basal amphibolite from the Alto Tererê
Formation and minimum detrital zircon U–Pb ages at approximately
1700 Ma for siliciclastic units. These data indicate that the siliciclastic
units of the Alto Tererê Formation are younger than the granitic and
gneissic basement of the RACT.

The Alto Tererê Formation records a Barrovian-typemetamorphism,
varying from upper greenschist facies (garnet zone) to middle amphib-
olite facies conditions (kyanite zone), with an age between 1310 and
1270 Ma (40Ar–39Ar and K–Ar data of Araújo et al., 1982; Cordani
et al., 2010a,b; monazite U–Pb data of Lacerda Filho et al., 2014).

3. Analytical methods

We selected 14 samples of key geological units of the RACT for zir-
con U–Pb geochronology. U–Pb geochronological determinations
were obtained from zircon grains extracted from individual samples
using common procedures involving crushing, disk-milling and sepa-
ration using standard heavy liquid and magnetic techniques. After-
ward, zircon grains were hand-picked, selected, mounted in epoxy
and polished. U–Pb determinations were performed by SHRIMP at
the Geochronology Research Center of the University of São Paulo
(CPGeo-USP) and by LA-MC-ICP-MS at the Isotope Geology Laboratory
of the Geosciences Institute of the Federal University of Rio Grande do
Sul (UFRGS) and the Laboratory of Geochronology at the University of
Brasília (UnB).

Zircon grains analyzed by SHRIMP were mounted together
with the TEMORA standard and coated with Au after polishing.
Cathodoluminescence (CL) images of the polished mounts were
obtained using a FEI-QUANTA 250 FEG scanning electron microscope
equipped with a CentaurusMono CL3+ cathodoluminescence spectro-
scope at the CPGeo-USP. The mounts were then analyzed by U–Pb
isotopic technique using a SHRIMP-IIe machine at the CPGeo-USP,
following analytical procedures described in Williams (1998). Correc-
tion for common Pb was made based on the 204Pb measured, and
the typical error component for the 206Pb/238U ratio is less than 2%.
The U abundance and U–Pb ratios were calibrated against the TEMORA
standard.

Backscattered electron (BSE) images of zircons analyzed by LA-MC-
ICP-MS were obtained using a JEOL JSM 5800 electron microscope
(UFRGS) and an FEI Quanta 450 scanning electron microscope (UnB).
LA-MC-ICP-MS isotopic analyses were performed using Finnigan
Neptune instruments coupled to ablation systems with a Nd-YAG
laser (k = 213 nm) from the New Wave Research at UFRGS and UnB.
The grains were ablated at a spot size of 30 μm, a frequency of 10 Hz
and an intensity between 0.19 and 1.02 J/cm2. The pulverized material
was transported by a flow of He (~0.40 L/min) and Ar (~0.90 L/min)
in analyses of 40 cycles of 1 s. The international standard GJ-1 was
used to correct the drift of the equipment as well as the fractionation
between the U and Pb isotopes. The standards UQZ (UFRGS) and
TEMORA-2 (UnB) were used to verify the accuracy of the analyses.
The data collection procedure followed the reading sequence: 1 blank,
1 standard, 4 samples, 1 blank and 1 standard. Each reading determined
rom the Rio Apa Cratonic Terrane (Mato Grosso do Sul, Brazil): New
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t1:1 Table 1
t1:2 Description and location of samples with zircon U–Pb analyses performed in this work. Abbreviations for deformation mechanisms: GBM: grain boundary migration recrystallization, BLG: bulging recrystallization.

t1:3 Sample Unit Lithology Mineralogy Deformation mechanism Age (Ma) Method Latitude Longitude Terrane

t1:4 Primary Metamorphic Quartz Feldspar

t1:5 FM-101A Córrego Jibóia Gneiss
(Porto Murtinho Complex)

Mylonitic granitic gneiss Mc, Qtz,
pseudomorphs of
Pl and Bt, Ttn, Ap,
Zrn

Se, Ep, Ab (35
vol.%)

GBM superposed by
BLG

BLG 1947 ± 9
(1989 ± 11
inheritance)

SHRIMP −20.49830 −57.25810 Western

t1:6 FM-128A Morro da Lenha Granite
(Porto Murtinho Complex)

Hydrothermalized porphyritic
biotite monzogranite

Mc, Qtz,
pseudomorphs of
Pl and Bt, Zrn

Se, Ep, Bt, Ap, Ab,
Cb (55 vol.%)

Very weak
intracrystalline
deformation

No ductile deformation 1941 ± 13 SHRIMP −20.83890 −57.34790 Western

t1:7 MS-141A Chatelodo Granite Granophyric syenogranite Pl, Kfs, Mag, Bt Ep, Se, Chl, Ttn, Opq Very weak
intracrystalline
deformation

No ductile deformation 1902 ± 12 SHRIMP −21.45277 −57.46107 Western

t1:8 MS-110B Porto Murtinho Gneiss
(Porto Murtinho Complex)

Retrometamorphosed gneiss Chl, Se, Ep, Ab, Qtz,
Rt, Opq, Zrn, Mnz,
pseudomorphs
of Pl and Kfs

SGR superposed by
BLG

1910–1950 SHRIMP −21.19436 −57.39275 Western

t1:9 MS-29A Córrego do Cervo Granite
(Alumiador Suite)

Granophyric syenogranite Mc, Pl, Qtz, Bt,
Mag, Grt, Ttn, Zrn

Se, Chl, Ep, Fl BLG No ductile deformation 1841 ± 15 SHRIMP −21.34595 −57.10801 Western

t1:10 FM-57 Santa Otília Granite
(Alumiador Suite)

Granophyric syenogranite Pl, Mc, Qtz, Mag,
Ttn, Zrn

Se, Ep, Bt No ductile
deformation

No ductile deformation 1830 ± 12 SHRIMP −20.97440 −57.29890 Western

t1:11 VC-15 Rio da Areia Augengneiss Porphyroclastic biotite
monzogranite

Mc, Qtz, Pl, Bt,
Mag, Ttn, Ap, Zrn

Ep, Se, Chl, Ab GBM BLG 1809 ± 9 LA-MC-ICP-MS −21.97719 −56.84445 Southeastern

t1:12 FM-169A Rio Naitaca Formation Andesitic lapilli tuff Pl, Qtz Chl, Ep, Cb No ductile deformation No ductile deformation 1813 ± 18 SHRIMP −20.60150 −57.47930 Western
t1:13 MR-159 Scardine Granite Hornblende-biotite

monzogranite
Qtz, Pl, Mc, Bt, Hbl,
Ap, Zrn

Ep No ductile deformation No ductile deformation 1791 ± 19 LA-MC-ICP-MS −21.68059 −56.89012 Southeastern

t1:14 MS-50A Caracol Gneiss Biotite granodiorite Pl, Qtz, Mc, Bt, Zrn,
Rt, Ttn, Opq

Ep, Ms, Chl GBM Intracrystalline
deformation

1781 ± 7 LA-MC-ICP-MS −21.431 −57.019 Eastern

t1:15 FM-147 Caracol Gneiss Syenogranitic
muscovite-biotite gneiss

Mc, Qtz, Pl, Bt, Mag,
Ttn, Zrn

Ms, Ep, Cb GBM Intracrystalline
deformation

1753 ± 13 SHRIMP −20.84290 −57.06490 Eastern

t1:16 MR-50 Santa Clarinha Orthogneiss
(Baia das Garças Suite)

Monzogranitic
hornblende-biotite gneiss

Mc, Qtz, Pl, Bt, Hbl,
Ttn, Ap, Zrn

Ep, Se, Chl Intracrystalline
deformation

No ductile deformation 1750 ± 9 LA-MC-ICP-MS −21.54568 −56.92784 Eastern

t1:17 VC-83A Espinilho Orthogneiss
(Baia das Garças Suite)

Monzogranitic biotite gneiss Qtz, Mc, Pl, Bt,
Mag, Zrn

Py, Chl, Se, Ep Intracrystalline
deformation

No ductile deformation 1719 ± 11 LA-MC-ICP-MS −21.60155 −56.96713 Eastern

t1:18 FM-173 Rio Perdido Suite Microgabbronorite Opx, Cpx, Pl, Zrn Ep, Se, Act, Bt No deformation No deformation 1589 ± 44 LA-MC-ICP-MS −20.624 −57.469 Western
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the intensities of the masses of 202Hg, 204(Pb + Hg), 206Pb, 207Pb, 208Pb
and 238U. The reduction of the raw data followed the procedure
described in Bühn et al. (2009).

SHRIMP and LA-MC-ICP-MS ages were calculated using the ISOPLOT
3.0 program (Ludwig, 2003).
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4. Results

A summary with descriptions of analyzed samples and zircon U–Pb
ages is presented in Table 1, while detailed petrographic descriptions
are presented in the Supplementary material. Locations of the analyzed
samples are displayed in Fig. 2.
U
N
C
O

R
R
E
C
T

1.1 2.1

3.1
4.1

7.1

6.1
8.1

5.1

1.1

2.1
3.1

4.1

7.1
6.1

8.15.1

1.1

2.1
3.1

4.1

7.1

6.1

8.1

5.1

1.1 2.1
3.1

4.1

7.1

6.1
8.1

5.1

1.1 2.1
3.1 4.1

7.16.1 8.1

9

5.1

1.1

2.1

3.1 4.1

7.1

6.1 8.15.1

1.1

2.1

3.1

4.1

7.1

6.1

8.15.1

1.1 2.1 3.1

4.1

7.1

6.1

8.1

5.1

FM-101A

FM-128A

MS-141A

MS-110B

MS-29A

FM-57

FM-169A

FM-147

5.2

3.2

2.2

Fig. 3. Cathodoluminescence images showing the zircon grains analyzed by U–Pb SHRIMP isoto
Numbers in the bottom left corners are sample numbers discussed in the text.
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4.1. Western Terrane

4.1.1. Córrego Jibóia Gneiss (Porto Murtinho Complex)
The Córrego Jibóia Gneiss (Faleiros et al., 2014) outcrops as a series

of isolated small hills over awide area covered byQuaternary sediments
of the Pantanal Formation (Fig. 2). Sample FM-101A is a gray proto-
mylonitic monzogranite with an igneous inequigranular seriated tex-
ture largely preserved despite the superposed deformation. Secondary
sericite, epidote and albite represent approximately 35 vol.% of the
rock. The sample presents euhedral to subhedral zircon grains with
sizes between 60 and 205 μm and an aspect ratio from 1:1 to 4:1. CL
images indicate two populations of zircons, one composed of dark crys-
tals (higher U contents)with oscillatory zoning and the other composed
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of grains with light cores (lower U contents) and dark rims, both with
oscillatory zoning (Fig. 3a). Fifteen SHRIMP analyses were performed
in the cores and rims of the zircon grains (Table S1, Supplementary
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data), but three analyses were discarded due to high analytical errors;
the remaining analyses are concordant within analytical errors. The in-
ternal structure of zircon grains in conjunction with spot U–Pb data
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allow us to interpret two age populations: (1) five analyses performed
on low-U zircon cores (light in CL images) yield a concordia age of
1989 ± 11 Ma (mean square of the weighted deviates — MSWD =
0.40; Fig. 4a), whichwe interpret as inheritance; and (2) seven analyses
carried out on high-U zircon rims and homogeneous grains (dark in CL
images) yield a concordia age of 1947± 9Ma (MSWD= 0.30; Fig. 4a),
inferred as a magmatic crystallization age.

4.1.2. Morro da Lenha Granite (Porto Murtinho Complex)
The Morro da Lenha Granite (Faleiros et al., 2014) is an ellipsoidal

stock that outcrops over 7.2 km2, displaying an aspect ratio of 1:8
with a NW-trending orientation (Fig. 2). Its margins are covered by
sediments of the Pantanal Formation. Sample FM-128A, representative
of the main lithotype of the pluton, is a dark green hydrothermalized
porphyritic monzogranite with phenocrysts of pinkish microcline in a
medium- to coarse-grained matrix. The sample presents euhedral to
subhedral prismatic zircon grains with a size in the range of 65 to
290 μm, an aspect ratio between 2:1 and 7:1 and oscillatory composi-
tional zoning (Fig. 3b). Some grains present irregularly shaped cores
truncated by rimswith oscillatory zoning (Fig. 3b). Fifteen SHRIMP anal-
yses were performed in zircon grains (Table S1), of which 14 analyses
are concordant, within analytical errors. Nine spot analyses are distrib-
uted in a central cluster in the Concordia diagram and yield a concordia
age of 1941 ± 13 Ma (MSWD = 1.6; Fig. 4b). The remaining spot
analyses are distributed in two marginal clusters at ages of approxi-
mately 1890 and 2010 Ma (Fig. 4b). However, the internal structures
and isotopic composition of the analyzed zircon grains do not allow us
to establish the existence of zircon zones or grainswithdifferent crystal-
lization ages with certainty. In fact, this pattern could be a result of
isotopic disequilibrium. Thus, we interpret the age of 1941 ± 13 Ma as
the most representative crystallization age for the Morro da Lenha
Granite.

4.1.3. Chatelodo Granite
The Chatelodo Granite (Pavan et al., 2014) occurs as a series of small

outcrops (2 × 5 m wide) along the western part of the study area. It is
partially covered by metavolcanic rocks from the Serra da Bocaina
Formation (Pb-evaporation age of 1877 ± 4 Ma; Brittes et al., 2013)
and by sediments of the Pantanal Formation. Sample MS-141A is a
hololeucocratic pinkish to greenish porphyritic syenogranite, with
plagioclase and alkali feldspar phenocrysts set in a fine- to medium-
grained matrix. The sample presents one population of prismatic zircon
grainswith an aspect ratio of 2:1 and slightly rounded terminations. The
CL images show grains with dark and light cores and rims presenting
regular to irregular compositional zoning (Fig. 3c). Fifteen SHRIMP anal-
yses were performed (Table S1), of which ten analyses are concordant,
within analytical errors. Five analyses were discarded due to high
common Pb. The data are distributed along a main central age cluster
with six concordant analyses yielding a concordia age of 1902 ±
11 Ma (MSWD = 0.31; Fig. 4c), interpreted as the best estimate for
the time of crystallization of the pluton. The three remaining analyses
have an apparent age of ~1970Ma, but there is no textural or composi-
tional evidence to interpret this age as geologically significant; thus, it
can represent an isotopic disequilibrium.

4.1.4. Porto Murtinho Gneiss (Porto Murtinho Complex)
The dominant lithological unit of the Porto Murtinho Complex

occurs on the western portion of the study area (Fig. 2). Sample
MS-110B is a retrometamorphic gray banded gneiss typical of this unit,
and it presents a greenschist facies assemblage (chlorite + sericite ±
albite) that corresponds to approximately 60 vol.% of the rock. The
sample presents zircon grains with rounded terminations and regular
and irregular compositional zoning, and some grains show inherited
cores and newer rims (Fig. 3d). Sixteen SHRIMP analyses were per-
formed (Table S1). Twelve of these are concordant, within analytical
errors, and they span the age interval from 1900 to 3200 Ma (Fig. 4d).
Please cite this article as: Faleiros, F.M., et al., Zircon U–Pb ages of rocks f
insights for its connection with the Amazonian ..., Gondwana Research (2
The morphology of the zircon grains is characteristic of detrital grains,
and the ages must be interpreted as source ages. We interpret the
youngest age group (1900–1950 Ma) as the maximum depositional
age for the sample.
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4.1.5. Córrego do Cervo Granite (Alumiador Suite)
The Córrego do Cervo Granite (Pavan et al., 2014) is an elongated

batholith of approximately 270 km2 of outcropping area and N–S-
trending orientation (Fig. 2). Its boundaries are defined by mylonitic
zones in contact with rocks from the Alto Tererê Formation and the
Caracol Gneiss. SampleMS-29A is a pinkish protomylonitic syenogranite,
with a fine- to medium-grained seriated and granophyric texture. The
sample presents one population of prismatic zircons with a grain size
from 65 to 200 μm, an aspect ratio between 2:1 and 3:1 and rounded
terminations. The CL images show grains with predominantly dark
cores and regular to irregular compositional zoning (Fig. 3e). Thirteen
SHRIMP spot analyses were performed in zircon grains (Table S1), in-
cluding cores and rims. The data are distributed along a main central
age cluster with seven concordant analyses yielding a concordia age of
1841 ± 15 Ma (MSWD = 1.19; Fig. 4e). Three remaining analyses
have apparent ages of ~1970 Ma, but there is no textural or composi-
tional evidence to interpret this age as geologically significant. We in-
terpret the age of 1841 ± 15 Ma as the time of pluton crystallization.
E
D
 P4.1.6. Santa Otília Granite (Alumiador Suite)

The Santa Otília Granite (Faleiros et al., 2014; Pavan et al., 2014) is an
ellipsoidal batholith of 264 km2 of outcropping area, an aspect ratio of
3:1 and a NNW-trending orientation (Fig. 2). It is partially in tectonic
contact with rocks of the Alto Tererê Formation and partially covered
by metasedimentary rocks of the Rio Naitaca Formation and sediments
of the Pantanal Formation. Sample FM-57 is a medium-grained pinkish
granophyre with an isotropic structure and syenogranitic composition
and is representative of the main lithotype present in the batholith.
The sample presents euhedral zircon grains with sizes from 50 to
100 μm and an aspect ratio between 1:1 and 2:1. The CL images show
grains with oscillatory compositional zoning and no inherited cores
(Fig. 3f). Fifteen SHRIMP spot analyses were performed in zircon grains
(Fig. 3f, Table S1). All of the analyses are concordant within errors, but
four analyses were discarded due to high content of common Pb. The
data are distributed along amain central age clusterwith six concordant
analyses yielding a concordia age of 1830 ± 12 Ma (MSWD = 0.93;
Fig. 4f), interpreted as the best estimate for the time of crystallization
of the pluton.
4.1.7. Rio Naitaca Formation
The Rio Naitaca Formation (Fig. 2) is composed of very low-grade

meta-arkose, meta-wacke, slate and phyllite, with common intercala-
tions of layers of meta-andesitic volcanic rocks and pyroclastic rocks.
Sample FM-169A comes from the base of the Rio Naitaca Formation
and comprises a foliateddark-green pyroclastic rock that occurs interca-
lated with meta-sandstone layers. It is composed of approximately
70 vol.% of angular to sub-rounded lapilli to bomb fragments of andesite
tuffs and approximately 30 vol.% of domains of feldspathic wackestone
or arkose. The sample displays prismatic, rounded and fragmented
zircon grains with sizes varying from 80 to 235 μm and aspect ratios
between 1:1 and 7:1. The CL images show grains with regular and
complex oscillatory zoning (Fig. 3g). Fifteen U–Pb SHRIMP analyses
were performed on zircon grains (Table S1). Six concordant analyses
of a youngest zircon group yield a concordia age of 1813 ± 18 Ma
(MSWD = 1.8; Fig. 4g), interpreted as the time of crystallization
of the andesite fragments and of the sedimentation of the base of the
Rio Naitaca Formation. Four remaining concordant analyses yield
207Pb–206Pb ages from 1918 ± 11 Ma to 2003 ± 11 Ma (Table S1),
interpreted as detrital zircon input.
rom the Rio Apa Cratonic Terrane (Mato Grosso do Sul, Brazil): New
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4.2. Eastern Terrane

4.2.1. Caracol Gneiss
The Caracol Gneiss (Cordani et al., 2010a, 2010b) is dominated

by pinkish, hololeucocratic, foliated granites with monzogranitic to
syenogranitic composition. Sample MS-50A comes from a kilometer-
scale body of granodioritic banded gneiss hosted by the main rocks of
the Caracol Gneiss. The sample presents one population of subhedral
to euhedral zirconwith grain sizes from 160 to 600 μmand aspect ratios
between 1:1 and 4:1. The BSE images show grainswithweak oscillatory
compositional zoning and no inherited cores (Fig. 5a). Twenty-one
U–Pb LA-MC-ICP-MS analyses were performed (Table S1), including
core and rim analyses, yielding an upper intercept age of 1781 ± 7 Ma
(MSWD= 1.5) (Fig. 6a). This age is interpreted as the time of crystalli-
zation of the rock.

Sample FM-147 is a light gray gneiss of syenogranitic composition
associated with regionally abundant, pinkish, foliated granites. The
sample presents subhedral zircon grains with sizes varying from 100
to 250 μm, aspect ratios between 2:1 and 3:1, and complex composi-
tional zoning, including domains with oscillatory zoning (Fig. 3h).
Seventeen U–Pb SHRIMP analyses were performed (Table S1), of
which 16 are concordant and yield a concordia age of 1753 ± 13 Ma
(MSWD = 0.83; Fig. 4h), interpreted as the time of crystallization of
the rock.

4.2.2. Santa Clarinha Orthogneiss
The Santa Clarinha Orthogneiss (Remédio et al., 2013) is an ellipsoi-

dal body with an aspect ratio of 6:1, a NE-trending orientation and
approximately 450 km2 of outcropping area (Fig. 2), whichwe interpret
as associated with the Baia das Garças Suite. Sample MR-50 is a
monzogranitic gneiss with a foliation defined by the preferred orienta-
tion of millimeter-thick mafic lenses composed of biotite, epidote,
hornblende and titanite. The sample presents prismatic zircon grains
with rounded terminations and an aspect ratio between 1:1 and 3:1.
The BSE images show grains primarily of homogeneous composition.
Twenty-five LA-MC-ICP-MS analyses were performed (Table S1),
including core and rim analyses, but five analyses were discarded due
to elevated analytical errors. The remaining analyses are concordant,
but they show a relatively large scattering on the concordia around a
central age. Thirteen concordant analyses yield an upper intercept age
of 1742 ± 10 Ma (MSWD = 0.93) (Fig. 6b). Eight analyses yield a
concordia age of 1750 ± 9 Ma (MSWD = 0.48) (Fig. 6b), interpreted
as the best estimate for the time of crystallization of the Santa Clarinha
Orthogneiss.

4.2.3. Espinilho Orthogneiss
The Espinilho Orthogneiss (Remédio et al., 2013) comprises a

deformed granitic stock with ellipsoidal shape (aspect ratio of 1.6), a
U
N
C

Fig. 5. Back-scattered electron images showing the zircon grains analyzed by U–Pb LA-MC-ICP-
analyses. Numbers in bottom left corners are sample numbers discussed in the text.
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NW-trending orientation and an outcropping area of approximately
0.7 km2. Sample VC-83A is a light-brown, medium-grained, equi-
granular biotite-gneiss of monzogranitic composition. The sample
exhibits two zircon populations, both with an aspect ratio between
1:1 and 2:1. One population is composed of rounded grains, while the
other is composed of prismatic grains with rounded terminations. The
BSE images show the internal compositional zoning characteristic of ig-
neous zircons, without inherited cores. Twenty-three LA-MC-ICP-MS
analyses were performed (Table S1), including core and rim analyses.
Nevertheless, there is no significant variation of ages between the
different zones. The 23 spot analyses yield an upper intercept age of
1713± 14Ma (MSWD=1.09) (Fig. 6c), with a lower intercept toward
the Neoproterozoic, but with large errors. Thirteen analyses define a
concordia age of 1719 ± 11 Ma (MSWD = 0.26) (Fig. 6c), interpreted
as the best estimate for the time of crystallization of the Espinilho
Orthogneiss.

4.3. Southeastern Terrane

4.3.1. Rio da Areia Augen Gneiss
The Rio da Areia Augen Gneiss (Remédio et al., 2013) is a deformed

batholith elongated along theN–S direction (Fig. 2),with approximately
350 km2 of outcropping area. Its eastern portion is unconformably
overlain by undeformed Ediacaran siliciclastic sedimentary rocks from
the Corumbá Group. Its western portion is in tectonic contact with
rocks from the Caracol Gneiss and the Sanga Bonita Granite. The Rio
da Areia Augen Gneiss is composed of heterogeneously mylonitized
porphyritic granitic rocks and subordinately mylonitic banded gneiss.
Sample VC-15 is a reddish brown blastoporphyritic mylonitic gneiss
of monzogranitic composition. The sample presents prismatic zircon
grains with rounded terminations and an aspect ratio between 2:1
and 3:1. The BSE images show a dominance of grains with regular and
irregular compositional zoning and uncommon grains with a homoge-
nous composition. Twenty LA-MC-ICP-MS spot analyses were complet-
ed (Table S1), of which 17 yield an upper intercept age of 1820±18Ma
(MSWD = 4.7) (Fig. 6d). A sole concordant analysis yields an age of
1809 ± 9 Ma (Fig. 6d), which we interpret as the best estimate for the
time of crystallization of the pluton.

4.3.2. Scardine Granite
The Scardine Granite (Remédio et al., 2013) is a semi-circular pluton

of approximately 91 km2 of outcropping area that intruded banded
rocks from the João Cândido Gneiss (Fig. 2). Both the granite and its
host rocks are unconformably overlain in part by siliciclastic sedimenta-
ry rocks of the Corumbá Group. Sample MR-159 comprises a medium-
grained equigranular pinkish monzogranite with isotropic structure.
The sample displays only one zircon population consisting of prismatic
grains with an aspect ratio of approximately 2:1. The BSE images
MS isotopic technique. Black and white circles indicate the location of the performed spot

rom the Rio Apa Cratonic Terrane (Mato Grosso do Sul, Brazil): New
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numbers discussed in the text. Solid and dashed line ellipses represent data used and not used in the calculations of concordia ages, respectively. Ages and error ellipses are stated to 2σ
(95%) confidence limits.
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Cshow that compositionally homogeneous grains are dominant. Twenty-

six LA-MC-ICP-MS analyses were performed (Table S1), 14 of which,
with 97 to 102% of concordance, define an upper intercept age of
1791 ± 19 Ma (MSWD = 1.3) (Fig. 6e), interpreted as the time of
crystallization of the Scardine Granite.
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4.4. Rio Perdido Suite

Sample FM-173 is a dark-gray isotropic microgabbronorite collected
from an E–W-trending subvertical dyke of the Rio Perdido Suite. The
dyke is hosted by rocks from the Rio Naitaca Formation in the Western
Terrane. The sample presents rounded, anhedral and prismatic zircon
grains (Fig. 5b). The BSE images show the coexistence of homogeneous
grains and grains with oscillatory and complex compositional zoning
(Fig. 5b). Fifteen U–Pb LA-MC-ICP-MS analyses were performed
(Table S1), but five analyses were discarded due to elevated analytical
error. Five analyses with the youngest apparent ages define an upper
Please cite this article as: Faleiros, F.M., et al., Zircon U–Pb ages of rocks f
insights for its connection with the Amazonian ..., Gondwana Research (2
intercept age of 1589 ± 44 Ma (MSWD = 0.088; Fig. 6f), interpreted
as the time of the dyke crystallization. The five remaining analyses
present apparent 207Pb–206Pb ages of approximately 1800, 2200 and
2600 Ma (Fig. 6f; Table S1), which we interpret as detrital zircon
xenocrysts. Two concordant analyses of the youngest xenocrysts yield
a concordia age of 1810 ± 15 Ma (MSWD = 0.0114; Fig. 6f), which
coincides with the age of 1813 ± 19 Ma obtained for the host unit
(sample FM-169A, Rio Naitaca Formation).
5. Discussion

The zircon U–Pb SHRIMP and LA-MC-ICP-MS data obtained in this
work contribute to the chronostratigraphy of magmatism and the
tectono-metamorphic events of the RACT, for which few high-quality
age data exist. Table 2 gathers 22 available zircon U–Pb data, including
14 data from this work and eight published by Cordani et al. (2010a),
Plens et al. (2013) and Brittes et al. (2013). The integration of the new
rom the Rio Apa Cratonic Terrane (Mato Grosso do Sul, Brazil): New
015), http://dx.doi.org/10.1016/j.gr.2015.02.018
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t2:1 Table 2
t2:2 Summary of zircon U–Pb data available for the Rio Apa Cratonic Terrane. Geochemical signature interpretations are fromQ2 Silva (1998), Lacerda Filho et al. (2006), Manzano et al. (2012),
t2:3 Brittes et al. (2013),Q3 Manzano et al., 2013, Plens et al. (2013), Faleiros et al. (2014), Pavan et al. (2014), Pavan and Faleiros (2014) and Remédio and Faleiros (2014).

t2:4 Unit Lithology Age (Ma) Chemical signature Tectonic inferences Terrane

t2:5 Córrego Jibóia Gneiss (Porto Murtinho Complex) Mylonitic granitic gneiss 1989 ± 11a Inheritance Western
t2:6 Córrego Jibóia Gneiss (Porto Murtinho Complex) Mylonitic granitic gneiss 1947 ± 9a Calc-alkaline Arc-related plutonism Western
t2:7 Morraria Gneiss Migmatitic banded gneiss 1950 ± 23c Arc-related plutonism Eastern
t2:8 Morro da Lenha Granite (Porto Murtinho Complex) Porphyritic biotite monzogranite 1941 ± 13a Calc-alkaline Arc-related plutonism Western
t2:9 Chatelodo Granite Granophyric syenogranite 1902 ± 12a High-K calc-alkaline Arc-related plutonism Western
t2:10 Porto Murtinho Gneiss (Porto Murtinho Complex) Retrometamorphosed gneiss 1910–1950a Maximum depositional age Western
t2:11 Serra da Bocaina Formation Ignimbrite 1877 ± 4d Medium- to high-K

calc-alkaline
Arc-related volcanism Western

t2:12 Córrego do Cervo Granite (Alumiador Suite) Granophyric syenogranite 1841 ± 15a Alkaline (Type A-like) Post-collisional magmatism Western
t2:13 Alumiador Granite (Alumiador Suite) Porphyritic hornblende-biotite

monzogranite
1839 ± 33c High-K calc-alkaline Arc-related plutonism Western

t2:14 Santa Otília Granite (Alumiador Suite) Granophyric syenogranite 1830 ± 12a Alkaline (Type A-like) Post-collisional magmatism Western
t2:15 Rio da Areia Augengneiss Porphyroclastic biotite monzogranite 1809 ± 9b High-K calc-alkaline Syncollisional magmatism Southeastern
t2:16 Rio Naitaca Formation Andesitic lapilli tuff 1813 ± 18a Medium-K tholeiitic Arc-related volcanism Western
t2:17 Scardine Granite Hornblende-biotite monzogranite 1791 ± 19b Alkaline (Type A-like) Post-collisional magmatism Southeastern
t2:18 Caracol Gneiss Biotite granodiorite 1781 ± 7b High-K calc-alkaline

and alkaline
Granitic plutonism Eastern

t2:19 Caracol Gneiss Leucogranite 1774 ± 26c High-K calc-alkaline
and alkaline

Granitic plutonism Eastern

t2:20 Caracol Gneiss Syenogranitic muscovite-biotite gneiss 1753 ± 13a High-K calc-alkaline
and alkaline

Granitic plutonism Eastern

t2:21 Baia das Garças Granite (Baia das Garças Suite) Granite 1754 ± 42c High-K calc-alkaline Granitic plutonism Eastern
t2:22 Cerro Porã Granite (Baia das Garças Suite) Granite 1749 ± 45e Alkaline (Type A-like) Post-collisional magmatism Eastern
t2:23 Santa Clarinha Orthogneiss (Baia das Garças Suite) Monzogranitic hornblende-biotite gneiss 1750 ± 9b High-K calc-alkaline Arc-related plutonism Eastern
t2:24 Sanga Bonita Granite (Baia das Garças Suite) Porphyritic biotite monzogranite 1721 ± 25c High-K calc-alkaline Arc-related plutonism Eastern
t2:25 Espinilho Orthogneiss (Baia das Garças Suite) Monzogranitic biotite gneiss 1719 ± 11b High-K calc-alkaline Arc-related plutonism Eastern
t2:26 Rio Perdido Suite Dyke of micrograbbronorite 1589 ± 44b Tholeiitic basic

magmatism
Back-arc basin magmatism All the RACT

t2:27 a Zircon U–Pb SHRIMP ages (this work).
t2:28 b Zircon U–Pb LA-MC-ICP-MS ages (this work).
t2:29 c Zircon U–Pb SHRIMP ages (Cordani et al., 2010a, 2010b).
t2:30 d Zircon Pb-evaporation ages (Brittes et al., 2013).
t2:31 e Zircon U–Pb SHRIMP ages (Plens et al., 2013).
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CU–Pb ages presented in thisworkwith publishedU–Pb and geochemical

data allows a great refinement and advance in understanding the
tectonic evolution of the RACT, as summarized in Fig. 7.

The RACT is composed of smaller terranes with distinct evolutionary
histories. Cordani et al. (2010a) recognized two distinct terranes
(Eastern and Western Terranes) based on Sm–Nd model ages, and we
recognized a third terrane, defined as the Southeastern Terrane. We
will first discuss the evolutionary history of each terrane separately
and then discuss the history of the terrane collage.

The available geochronological data (Table 2) indicate that the
Western Terrane is made up of a granite-gneissic basement formed
within the age interval of 1940–1950 Ma. The western portion of the
Western Terranewas intruded by undeformed granites at approximate-
ly 1900Ma (Chatelodo Granite) and was recovered by volcanic rocks at
approximately 1880 Ma (Serra da Bocaina Formation). The granites of
the Alumiador Suite, present throughout the Western Terrane, repre-
sent the next magmatic event, which occurred primarily between
1840 and 1830 Ma. These rocks were later overlain by immature sedi-
ments and associated synorogenic volcanic and pyroclastic rocks (Rio
Naitaca Formation). A sample of lapilli-tuff from the base of the Rio
Naitaca Formation indicates that deposition began at 1813 ± 19 Ma.
Rocks from the Chatelodo Granite, Serra da Bocaina Formation and
Alumiador Suite are largely undeformed, but the Alumiador Suite was
intensely deformed at the contact zone with the Eastern Terrane. On
the other hand, the Rio Naitaca Formation presents a progressive
eastward increase of intensity in deformation and metamorphism. The
whole deformational pattern of the Western Terrane indicates a domi-
nant thin-skin deformation, where the basement was not involved in
the deformation that affected the supracrustal rocks. An exception to
this pattern is the highly deformed rocks from the Córrego Jibóia Gneiss
(formed at ~1950Ma), but the deformation of this unit could be related
to an older event. Another important characteristic of the Western
Please cite this article as: Faleiros, F.M., et al., Zircon U–Pb ages of rocks f
insights for its connection with the Amazonian ..., Gondwana Research (2
Terrane is that the granitic plutons (Chatelodo Granite and Alumiador
Suite) are dominated by subvolcanic rocks (e.g., granophyre), indicating
a shallow-level crystallization pattern.

The Porto Murtinho Gneiss, interpreted as a unit of sedimentary
protolith, presented zircon 207Pb–206Pb ages spanning from 1900 to
3200Ma,with a near continuous variation of ages throughout this inter-
val (Fig. 4, Table S1). Detailed petrographic analysis of several samples
from the Porto Murtinho Gneiss has revealed that the whole unit
underwent an intense lower greenschist facies metamorphic overprint,
and the peak prograde metamorphism cannot be assessed (Pavan and
Faleiros, 2014). The majority of the ages obtained from detrital zircons
are significantly older than the ages of the gneissic and granitic units
of the RACT, indicating that the main source rocks are not present in
the RACT. Although there are insufficient data to define a robust maxi-
mum depositional age, the minimum age group (from 1907 ± 78 to
1945 ± 62 Ma) (Table S1) provides important constraints to possible
geological correlations, indicating that the orthogneisses and granites
from the Porto Murtinho Complex might have contributed as source
rocks. Intrusive contactswith the Alumiador Suite constrain aminimum
depositional age of 1840–1830 Ma.

The available geochronological data (Table 2) indicate that the
Eastern Terrane is primarily composed of granitic gneisses formed
from1780 to 1750Ma (Caracol Gneiss) and intruded by granitic plutons
in the period between 1750 and 1720 Ma (Baia das Garças Suite).
Subsequently, this basement was covered by immature sedimentary
deposits from the Alto Tererê Formation (maximum depositional age
of ca. 1700 Ma; Lacerda Filho et al., 2014). Quartz and feldspar micro-
structures (Table 1; supplementary data) indicate that the rocks of the
Caracol Gneiss and the Baia das Garças Suite underwent a regional
moderate-temperature deformation phase (~500 °C) and a subsequent
low-temperature deformation phase (300–400 °C), both associated
with westward low-angle thrusting (Remédio and Faleiros, 2014). The
rom the Rio Apa Cratonic Terrane (Mato Grosso do Sul, Brazil): New
015), http://dx.doi.org/10.1016/j.gr.2015.02.018
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Fig. 7. Columnar sections and flow diagram showing the accretionary history of the Rio Apa Cratonic Terrane.
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same deformation affected the Alto Tererê Formation, which displays a
Barrovian-type metamorphism with conditions varying from upper
greenschist facies (garnet zone) to middle amphibolite facies (kyanite
zone) (Faleiros et al., 2014; Pavan and Faleiros, 2014; Pavan et al.,
2014). The overall deformational-metamorphic pattern of the Eastern
Terrane characterizes a thick-skin deformation, even though this
terrane is composed of significantly younger units in relation to the
Western Terrane. The contact relationships between the Alto Tererê
Formation with the basement rocks are exclusively characterized by
zones of ultramylonites and phyllonites (Remédio and Faleiros, 2014).
The contact zone between the Western and Eastern Terranes was de-
fined by the Aldeia Tomázia low-angle top-to-west thrust zone, which
was responsible for a metamorphic inversion, where deeper rocks of
the Eastern Terrane override shallower rocks of the Western Terrane.

The available geological and geochronological data (Table 2) indi-
cate that the Southeastern Terrane is composed of mylonitic banded
gneisses of unknown ages (João Cândido Gneiss) intruded by granitic
Please cite this article as: Faleiros, F.M., et al., Zircon U–Pb ages of rocks f
insights for its connection with the Amazonian ..., Gondwana Research (2
plutons in the period from 1810 to 1790 Ma. These rocks are covered
by metasedimentary rocks of the Alto Tererê Formation and display de-
formational andmetamorphic characteristics very similar to the Eastern
Terrane. A distinct feature is that the Eastern and Southeastern Terranes
are separated by a transcurrent shear zone (Serra do Perdido shear
zone), regionally an uncommon structure.

The evidence that the Alto Tererê Formation covers parts of the
Western, Eastern and Southeastern Terranes raises two possible
interpretations: (i) the Alto Tererê Formation is a para-autochthonous
unit deposited over the juxtaposed terranes, or (ii) the Alto Tererê
Formation is an allochthonous nappe thrusted over the juxtaposed
terranes. Detrital zircon U–Pb data presented by Lacerda Filho et al.
(2014) favor the first hypothesis. However, the age of juxtaposition of
the three terranes and of the consolidation of the RACT is somewhat
uncertain. At first, the age of 1589 ± 44 Ma obtained for a dyke of the
Rio Perdido Suite in the Western Terrane could be interpreted as the
maximum age for terrane juxtaposition, as this suite intrudes the entire
rom the Rio Apa Cratonic Terrane (Mato Grosso do Sul, Brazil): New
015), http://dx.doi.org/10.1016/j.gr.2015.02.018
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RACT. However, field and petrographic evidence indicates that
some dykes are deformed and completely replaced by metamorphic
assemblages, while others cut the regional structures and terrane
contacts (Fig. 2) and are preserved from the regional metamorphism.
This evidence suggests that part of the dykes crystallized after the
regional metamorphism. The main structure of the RACT is associated
with a Barrovian-type regional metamorphism (Pavan and Faleiros,
2014), which is expected for and typically associated with crustal thick-
ening in collisional suture zones (e.g., England and Thompson, 1984).
40Ar–39Ar and K–Ar data (hornblende, muscovite and biotite) obtained
primarily from units of the Eastern and Southeastern Terranes (Fig. 2;
Araújo et al., 1982; Cordani et al., 2010a) constrain the age of this
regional metamorphism to 1310–1270 Ma (Fig. 8). A monazite U–Pb
LA-MC-ICP-MS age of 1308 ± 39 Ma obtained for a biotite–staurolite–
kyanite–garnet schist from the Alto Tererê Formation (Lacerda Filho
et al., 2014) corroborates this interpretation. However, only two biotite
40Ar–39Ar data are available for the Western Terrane, both from unde-
formed samples of the Alumiador Granite (Figs. 2 and 8), and the role
of the regional metamorphism in this terrane is somewhat uncertain.
We interpret that during 1310–1270 Ma, the RACT was converted into
a collisional orogen. The available geochronological data suggest a
time span of approximately 400 My. between the last accretionary
period and the collisional period. From the present data, we interpret
that the juxtaposition between the Western, Eastern and Southeastern
Terranes must have occurred during the 1310–1270 Ma collisional
event.

5.1. Magmatic and tectonic evolution of the RACT

The zircon U–Pb ages present in Table 2 allow the recognition of
four main granitic magmatic events of ages within the intervals 1950–
1940 Ma, 1900–1880 Ma, 1840–1790 Ma and 1780–1720 Ma.

The oldest event, at 1950–1940 Ma, was recorded in both the
Western and Eastern Terranes, and the associated granitic units
(Córrego Jibóia Gneiss, Morro da Lenha Granite and Morraria Gneiss)
present the geochemical signature of subduction-related calc-alkaline
granites (Faleiros et al., 2014). The second magmatic event (1900–
1880 Ma) is represented by intrusive granites (Chatelodo Granite; this
work) and medium- to high-K calc-alkaline volcanism of the Serra
da Bocaina Formation (Godoy et al., 2010; Brittes et al., 2013). The
geochemical signatures and the association between the rhyolites and
andesites strongly suggest a subduction-related arc magmatism in this
period. This magmatic event was only identified in the westernmost
portion of the Western Terrane.

The third magmatic event (1840–1790 Ma) was identified in the
Western Terrane (Alumiador Suite) and the Southeastern Terrane (Rio
da Areia Augen Gneiss and Scardine Granite). In both cases, this event
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can be subdivided into two distinct tectonic periods based on U–Pb
geochronological determinations (Table 2) and available geochemical
data (Silva, 1998; Lacerda Filho et al., 2006; Manzano et al., 2012;
Manzano, 2013; Remédio et al., 2014). The Alumiador Granite
(1840 Ma) and the Rio da Areia Augen Gneiss (1810 Ma) present arc-
like high-K calc-alkaline signatures, and the Santa Otília (1830 Ma)
and Scardine (1790 Ma) Granites exhibit alkaline signatures of exten-
sional settings. Manzano et al. (2012) describe granitic facies of the
Alumiador Suite with petrographic and geochemical characteristics of
syncollisional granitic series, but these rocks were not dated until
now. Although showing the same magmatic and geochronological
patterns, the Western and Southeastern Terranes are separated by a
15–60-km-wide intensely deformed zone with distinct geochronologi-
cal characteristics (the Eastern Terrane), and the two terranes may not
have belonged to the same magmatic arc. Sample MS-29A, with an
age of 1841 ± 15 Ma (Córrego do Cervo Granite), is located along the
contact zone between the Western and Eastern Terranes. This sample
represents a granite related to the main accretionary period of the
third magmatic event, and it was intensely sheared during the tectonic
collage between the two terranes. Rocks from the thirdmagmatic event
were only deformed in terrane contact zones.

The fourth magmatic event (1780–1720 Ma) is represented by the
whole Eastern Terrane and includes the Caracol Gneiss (1774 ±
26 Ma, Cordani et al., 2010a, 2010b; 1781 ± 7 and 1753 ± 13 Ma, this
work) and the Baia das Garças Suite (1754 ± 42 Ma; Cordani et al.,
2010a, 2010b), including the Cerro Porã Granite (1749 ± 45 Ma; Plens
et al., 2013), the Santa Clarinha Orthogneiss (1750 ± 9; this work),
the Sanga Bonita Granite (1721 ± 25; Cordani et al., 2010a, 2010b)
and the Espinilho Orthogneiss (1719 ± 11; this work). The latter
three units present subduction-related high-K calc-alkaline signatures,
suggesting a younger accretionary magmatic event, while the Caracol
Gneiss and the Cerro Porã Granite are dominated by alkaline signatures
of extensional settings. A distinct characteristic of these magmatic
rocks is a generalized strong mylonitic deformation primarily related
to westward thrusting. Microstructural evidence, with generalized
dynamic recrystallization of quartz by grain boundary migration
and incipient recrystallization of feldspar by bulging recrystallization
(Table 1), indicates deformational temperatures of approximately
500 °C (Voll, 1980; Stipp et al., 2002; Passchier and Trouw, 2005;
Faleiros et al., 2010). Superposed brittle deformation of feldspars and
bulging recrystallization of quartz indicate that the mylonitization
progressed to upper crustal levels during the exhumation of the Eastern
Terrane rocks. Bulging recrystallization of quartz generally occurs
between 300 and 400 °C (Stipp et al., 2002; Faleiros et al., 2010).

Considering that the four granitic events are primarily associated
with distinct tectonostratigraphic terranes and are bounded by shear
zones, the RACT can be explained as the collage of a series of fragmented
diachronic magmatic arcs and other tectonic assemblages in a long-
lived accretionary margin, reflecting an extremely mobile tectonic
regime. Nevertheless, the spatial relationships of the three younger
magmatic events present in the Western and Eastern Terranes display
a clear geochronological zonation, which could reflect partially pre-
served paleogeography. This zonation suggests a magmatic arc with
an age of 1900–1880Ma in thewesternmost part of the RACT, followed
by amagmatic arc with an age of 1840–1810Ma in the central part, and
a magmatic arc with an age of 1780–1720 Ma in the eastern part of the
RACT. This geochronological zonation suggests orogenmigration due to
progressive subduction from east to west, with subduction of the east
plate under the west plate (present-day coordinates).

The metamorphic and structural patterns of the Alto Tererê Forma-
tion are consistent with westward crustal thickening during the colli-
sional phase of the orogen (from 1310 to 1270 Ma), and the Alto
Tererê Formation could represent a reworked accretionary prism.
Barrovian metamorphism suggests collision with an unknown conti-
nental mass located to the east between 1310 and 1270 Ma (as
indicated by 40Ar–39Ar hornblende, muscovite and biotite cooling ages
rom the Rio Apa Cratonic Terrane (Mato Grosso do Sul, Brazil): New
015), http://dx.doi.org/10.1016/j.gr.2015.02.018
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presented by Cordani et al., 2010a, 2010b, and a U–Pb monazite age
presented by Lacerda Filho et al., 2014). The geochronological and
geological data suggest a complex composite accretionary orogen of
approximately 230 Ma duration (from 1950 to 1720 Ma) that was con-
verted into a collisional orogen between 1310 and 1270 Ma.

5.2. Relationship to the Amazonian Craton

An evaluation of the relationship between the RACT and the
Amazonian Craton must first take into account two possibilities: was
the RACT autochthonous or allochthonous to the Amazonian Craton in
pre-Gondwana times? These two hypotheses are discussed below.

5.2.1. RACT autochthonous to the Amazonian Craton
The hypothesis of the RACT as autochthonous to the Amazonian

Craton implies that the RACT should be a prolongation of the Paraguá
Terrane (eastern Bolivia) or Jauru Terrane (Mato Grosso and Rondônia,
Brazil). Both possibilities imply that the Grenvillian-age belts (Nova
Brasilândia, Aguapeí and Sunsás) should be intracontinental features,
as interpreted by Santos et al. (2000, 2008). However, the available
U–Pb geochronological data indicate that the basement of the Paraguá
and Jauru Terranes is dominated by rocks younger than the RACT
basement.

The Paraguá Terrane basement is dominated by metasedimentary
rocks of the La Chiquitania and San Ignacio Groups, both deposited at
or after ca. 1690 Ma. These two groups were intruded by granitic rocks
of the Lomas Maneches Suite between 1690 and 1640 Ma (Litherland
et al., 1989; Boger et al., 2005; Santos et al., 2008; Vargas-Mattos et al.,
2011). Restricted older basement rockswere identified in the southern-
most portion of eastern Bolivia: the granulitic orthogneiss of the Lomas
Maneches Suite, with a zircon U–Pb age of 1818 ± 13 Ma (Santos et al.,
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Fig. 9. Sm–Nd whole-rock data compiled from the Rio Apa Cratonic Terrane (Lacerda Filho et a
Casquet et al., 2010) and units from the SW Amazonian Craton: Ventuari–Tapajós Province (Da
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2008), and the Correreca Granite, with zircon U–Pb ages of 1925 ±
32 Ma and 1894 ± 13 Ma (Vargas-Mattos et al., 2010, 2011). The
basement rocks were intruded by voluminous syn-tectonic granites
primarily in the period from 1350 to 1320 Ma (Boger et al., 2005;
Santos et al., 2008; Matos et al., 2009). Nd isotope data (Lacerda Filho
et al., 2006; Santos et al., 2008; Matos et al., 2009; Cordani et al.,
2010a) indicate that the Paraguá Terrane rocks were primarily derived
from a source younger than the RACT source (Nd TDM model ages of
1500–2050 Ma against 2000–2600 Ma, respectively; Fig. 9a, b). Thus,
besides the youngest rocks, the rocks from the Paraguá Terrane were
derived from distinct sources (Fig. 9a–d), which is strong evidence
against the correlation between the Paraguá Terrane and the RACT. An
exception to this is theOrosirian rocks present in the southernmost por-
tion of the eastern Bolivia basement (Correreca Granite; Vargas-Mattos
et al., 2010, 2011), which could be interpreted as the northernmost
prolongation of the RACT. Furthermore, the Correreca Granite occurs
south of the San Diablo Front (Fig. 1), a major sinistral shear zone that
is considered the southern boundary of the Sunsas Belt (Litherland
et al., 1989).

Similar to the Paraguá Terrane, the Jauru Terrane is dominated
by rocks younger than the RACT (Fig. 9a, b), with granitic suites
(e.g., Santa Helena and Rio Branco batholiths) emplaced primarily
from 1330 to 1560 Ma (Geraldes et al., 2001; Santos et al., 2008). A re-
stricted granitic basement with ages of 1790–1740 Ma was recognized
in the Jauru Terrane (Geraldes et al., 2001). The rocks from the Jauru
Terrane present Nd TDM model ages between 1350 and 1950 (Fig. 9c,
d), indicating that they were not derived from the same source of the
RACT, so both terranes cannot be correlated.

In summary, U–Pb and Nd isotope data (Fig. 9) strongly suggest that
the RACT is allochthonous to the SW Amazonian Craton. The implica-
tions of this interpretation are discussed in the next section.
E
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l., 2006; Cordani et al., 2010a), the Arequipa Terrane (Bock et al., 2000; Loewy et al., 2004;
ll’Agnol et al., 1999; Lamarão et al., 2002, 2005; Pinho et al., 2003; Santos et al., 2004), Rio
s et al., 2008; Matos et al., 2009), Jauru Terrane (Geraldes et al., 2001; Santos et al., 2008),
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5.2.2. RACT allochthonous to the Amazonian Craton
If the RACT was allochthonous to the SW Amazonian Craton in pre-

Gondwana times, as suggested by available geochronological and
isotopic data, two key questions must be answered: (i) Is it possible to
recognize the ancestry of the RACT in South America? (ii) When and
where did the collage between the RACT and the Amazonian Craton
occur?

Based on the age and tectonic setting of the granitic magmatism,
Cordani et al. (2010a) correlate the RACT with the Rio-Negro Juruena
Province of the Amazonian Craton. In fact, geochemical, U–Pb and Nd
isotope data indicate that part of the granitic rocks from the Rio
Negro–Juruena Province were formed in an accretionary environment
between 1760 and 1730 Ma (Santos et al., 2000; Payolla et al., 2002;
Santos et al., 2008), a setting very similar to the Eastern Terrane of the
RACT (Fig. 9). This part of the Rio Negro–Juruena Province presents Nd
TDM model ages primarily within the 1900–2200 Ma interval (Santos
et al., 2000; Payolla et al., 2002; Santos et al., 2008), which coincides
with the data of the Eastern Terrane (Lacerda Filho et al., 2006;
Cordani et al., 2010a) (Fig. 9). However, the Rio Negro–Juruena accre-
tionary orogen was active until ca. 1500 Ma (Tassinari and Macambira,
1999; Santos et al., 2000; Payolla et al., 2002; Santos et al., 2008), and
there are no granitic rocks younger than 1700 Ma in the Eastern
Terrane. Furthermore, there are no rocks with U–Pb ages and Nd isoto-
pic signatures similar to those of theWestern Terrane of the RACT in the
Rio Negro–Juruena Province (Fig. 9). These data make the correlation
between the RACT and the Rio Negro–Juruena Province unlikely.

Basement rocks from the Ventuari–Tapajós Province of the
Amazonian Craton display U–Pb age and Nd isotopic patterns
(Dall’Agnol et al., 1999; Lamarão et al., 2002; Pinho et al., 2003; Santos
et al., 2004; Lamarão et al., 2005; Cordani and Teixeira, 2007) that
are very similar to the Western and Eastern Terranes (Fig. 9). In this
scenario, the RACT can be interpreted as a fragment of the Ventuari–
Tapajós Province, which was dispersed and re-incorporated to the
proto-Amazonian Craton.

In an alternative model, Casquet et al. (2009, 2010, 2012) correlate
the RACT to the Arequipa Terrane (Peru), a correlation that is supported
by available U–Pb ages and Nd isotopic patterns (Bock et al., 2000;
Loewy et al., 2004; Casquet et al., 2010) (Fig. 9). The existence of the
Mara Craton, made up of theMaz Terrane (Western Sierras Pampeanas,
Argentina), Arequipa Terrane and the RACT (Casquet et al., 2009, 2012),
is a possibility that needs further investigation for confirmation.
The Arequipa Terrane records an early magmatism at 1.9–2.1 Ga, an
ultrahigh-temperaturemetamorphism at 1.87 Ga and felsicmagmatism
at 1.7–1.79 Ga (Casquet et al., 2010). Additionally, the magmatic events
can be partially correlated with those recorded in the RACT. Neverthe-
less, the Arequipa Terrane records a Grenvillian-age low-pressure
metamorphism (1.04–0.85 Ga; Casquet et al., 2010), which did not
affect the RACT. In the Maz Terrane, magmatic events at 1.9 and 1.7 Ga
were only inferred from detrital zircon ages (Casquet et al., 2008).

Considering the RACT as an allochthonous terrane, the history of its
collage to the Amazonian Craton should be addressed. As discussed
above, geochronological and isotopic data suggest that the RACT does
not correlate with the Jauru Terrane and most of the Paraguá Terrane.
If we consider the Tucavaca Belt as an aulacogenic feature (Brito Neves
et al., 1985; Ávila-Salinas, 1992; Cordani et al., 2009, 2010a), the
RACT–Amazonia collage could have occurred during the Rondonian–
San Ignacio (1560–1300Ma) or Grenvillian (1200–1000Ma)Orogenies.
The basement rocks present in the Corumbá region (Fig. 1), which are
considered the northernmost exposed portion of the RACT, play a key
role in this scenario. Nevertheless, these basement rocks have been
very poorly studied. Available thermochronological data are restricted
to K–Ar ages of 1730 ± 22 Ma (biotite) and 889 ± 44 Ma (K-feldspar)
(Hasui and Almeida, 1970). These data suggest that this basement has
not undergone tectonothermal effects related to the Rondonian–San
Ignacio event (1560–1300 Ma), and it was possibly little affected by
the late Sunsás event, as the closure temperature of K-feldspar to the
Please cite this article as: Faleiros, F.M., et al., Zircon U–Pb ages of rocks f
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argon system can be as low as 150 °C (Lovera et al., 1989). From the
present data, we interpret the Sunsás Belt as the most likely suture
zone between the RACT and the proto-Amazonian Craton, and the base-
ment south of the San Diablo Front (Bolivia), including the Correreca
Granite (Vargas-Mattos et al., 2010, 2011), as the northernmost part
of the RACT. In a more regional perspective, the available geological
data allow us to interpret the Arequipa Terrane and the RACT as part
of a single cratonic mass in pre-Rodinia times.

In a global perspective, accretionary belts with ages concentrated in
the period between 1.8 and 1.3 Ga have been reported worldwide and
related to the history of growth of the Columbia supercontinent, as ob-
served in thepresent-day southernmargin of North America, Greenland
and Baltica, the western margin of the Amazonian Craton, the southern
and eastern margins of the North Australia Craton and the southern
margin of the North China Craton (Rogers and Santosh, 2002; Zhao
et al., 2002, 2004; He et al., 2009; Bettencourt et al., 2010; Zhao et al.,
2011; Zhang et al., 2012; Scandolara et al., 2014). Roberts (2012,
2013) interprets the scarcity of global records of passive margin basins
throughout the Mesoproterozoic (Bradley, 2008) as an indication that
Columbia did not break up into dispersed continents but remained as
a quasi-integral continental lid in the period 1800–1300 Ma. This view
is reinforced by a scarcity of evolved Hf signatures in detrital zircons
observed worldwide during the period 1700–1200 Ma, which would
indicate the absence of interior orogenic belts with high degrees of
crustal reworking (Roberts, 2012, 2013). Hf data in detrital zircons
indicate an essentially juvenile signature at this period, indicating a
dominance of accretionary orogens related to plate margins (Roberts,
2012, 2013), which is consistent with the tectonic scenario of the
RACT. Nevertheless, the RACT was not taken into account in recent
Columbia reconstructions based on paleomagnetic data (Bispo-Santos
et al., 2008, 2012, 2014a, 2014b). The only exception is the Columbia
reconstruction presented by Teixeira et al. (2013), where the RACT ap-
pears in a marginal position, suggesting that it was part of the proto-
Amazonian Craton at ca. 1790 Ma. Based on geological, geochronologi-
cal and isotopic data, we speculate that between 1950 and 1720 Ma,
the RACT, and possibly the Arequipa Terrane, could have been part of
the Ventuari–Tapajós Province of the Amazonian Craton, which was
subsequently fragmented and dispersed as a microcontinent.

Geological and geochronological data indicate that at the period
between 1310 and 1270 Ma, the proto-RACT changed from an accre-
tionary orogen to a collisional orogen, and it was consolidated as a
cratonic mass at approximately 1270 Ma, preceding the formation
of Rodinia. From 540 Ma, West Gondwana was sectioned by the
Transbrasiliano Lineament, an extrusion-related vertical shear zone
more than 4500 km long in the NNE–SSW direction (in South
America; Fig. 1). This shear zone was responsible for dividing South
America into two geotectonic domains: pre-Tonian orogenic belts
(Laurentian affinity) to the west and Neoproterozoic orogenic belts
(Gondwanan affinity) to the east (Brito Neves and Fuck, 2014). The
southern portion of the Transbrasiliano Lineament passes near the
present-day eastern boundary of the RACT (Fig. 1). This lineament
could be responsible for fragmenting and dispersing the continental
mass that collided with the RACT during the event that produced the
Barrovian-type metamorphism recorded in the supracrustal rocks of
the Eastern and Southeastern Terranes (Alto Tererê Formation), culmi-
nating in the loss of an important part of the evolutionary history of the
RACT.
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