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Summary 

Geochemical characteristics were systematically determined for Early Cretaceous 
samples of carbonatitic rocks from Eastern Paraguay (Rio Apa, Amambay and Central 
Provinces). The data show that all the occurrences have an enriched isotopic signature 
and that the carbonatites have negligible or absent crustal signature. A petrogenetic 
model (parent liquids, fractional crystallization, hydrothermal interactions and weather- 
ing) is proposed as a function of incompatible trace element, stable (O-C) and radio- 
genic (Sr-Nd) isotope variations with the aim to test the significance of carbonatitic 
complexes as a marker of the metasomatized subcontinental lithospheric mantle. The 
results indicate that the carbonatites and primary carbonates from eastern Paraguay, and 
those from the north eastern Paran~ Basin (SE Brazil), were affected by metasomatic 
events distinct in time and composition. 
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Zusammenfassung 

Karbonatite aus Ost-Paraguay und ihre genetische Beziehung zu Kalium-Magma- 
tismus: C, O, Sr und Nd Isotope 

Die geochemischen Charakteristika von friihkretazischen Karbonatitproben aus 
Ostparaguay (Rio Alpa, Amambay und Zentrale Provinzen) wurden untersucht. Die 
Daten belegen, dal~ alle Vorkommen eine isotopische Anreicherungssignatur zeigen und 
dab ihnen eine entsprechende Krustensignatur fehlt. Ein Petrologisches Modell 
(Ausgangsschmelze, fraktionierte Kristallisation, hydrothermale Interaktion und 
Verwitterung) wird auf Grund der Verteilung der inkompatiblen Spurenelemente, der 
stabilen (C-O) und radiogenen (Sr-Nd) Isotope vorgeschlagen. Es versucht die 
Bedeutung der Karbonatitkomplexe als ,,Markerhorizonte" des metasomatischen 
subkontinentalen Mantels zu tiberpriifen. Die Ergebnisse zeigen, daf5 die Karbonatite 
und die prim[iren Karbonate in Ostparaguay, und jene aus dem Paran~i Becken SiJdost- 
Brasiliens dutch zeitlich und zusammensetzungsm~Big unterschiedliche metasoma- 
tische Prozesse erfaBt wurden. 

Introduction 

Carbonatitic rock-types from Southern Brazil (Paran~i Basin) are associated with 
potassic complexes, of kamafugitic and plagioleucititic affinity, at the northern 
margins of the Paraml Basin (Fig. 1; Comin-Chiaramonti and Gomes, 1996; 
Morbidelli et al., 1995). These complexes, dated at 138 to 65 Ma (Rodrigues and 
Santos Lima, 1984; Comin-Chiaramonti and Gomes, 1996), appear to be related to 
the thermal perturbations responsible also for the flood tholeiites and alkaline 
magmatism of the Paran~i Basin (Piccirillo and Melfi, 1988; Gibson et al., 1995; 
Morbidelli et al., 1995; Comin-Chiaramonti et al., 1997). The potassic magmatism 
and associated carbonatites from southern Brazil are believed to have originated 
from metasomatized mantle the melting of which would be triggered by the Tristan 
da Cunha (Huang et al., 1995) and Trindade (Gibson et al., 1995) mantle plumes, 
as also occurred for both the Paran~i flood tholeiites and the associated alkaline 
rocks (Comin-Chiaramonti et al., 1997). 

The genesis of carbonatites depends on processes such as liquid immiscibility, 
fractional crystallization and contamination by country rocks, whose role may be 
masked by hydrothermal and weathering processes. It is therefore essential to 
establish the primary geochemical features of carbonatites as these are crucial for 
evaluating their source(s). 

The carbonatitic occurrences from Eastern Paraguay were investigated in terms 
of geochemistry, and O, C, Sr and Nd isotopes. Detailed petrography, mineral 
chemistry and major and trace element geochemistry are reported in Censi et al. 
(1989), Castorina et al. (1994, 1996), Comin-Chiaramonti et al. (1995) and Comin- 
Chiaramonti and Gomes (1996). 

Geological setting 

The carbonatite occurrences from Eastern Paraguay are associated with potassic 
complexes of plagioleucititic affinity (Comin-Chiaramonti et al., 1992, i.e. 
"Roman Province Type-Lavas", Comin-Chiaramonti and Gomes, 1996; Shaw, 
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Fig. 1. Main areas of alkaline complexes in Brazil and Paraguay, in and around the Paranfi 
Basin. K potassic, Na sodic rocks. 1 Alto Parana~a (Morro do Engenho, Caiap6, Iporfi, 
Santo Antonio da Barra, Catalao, Serra Negra, Salitre, S~o, Gotardo, Araxa, Tapira, polos 
de Caldas), 2 Taiuvfi-Cabo Frio lineament (Taiuvfi, Jaboticabal, Polos de Caldas, Passa 
Quatro, Itatiaia, Morro Redondo, Barra do Piraf, Tingufi, Canaa, Tangufi, Ita6na, Morro de 
S~o Jo~o, Cabo Frio), 3 Ribeira Belt (Ipanema, Piedade, Itanha6m, Ilha do Monte de Trigo, 
Ilha de S~o Sebasti~o, Ilha de Vit6ria, Ilha dos Btizios), 4 Alto Paraguay (Cerro Boggiani, 
Fecho dos Morros, Pfio de A~ucar, Cerro Siete Cabezas), 5 Paraguay (K: Apa, Chiriguelo, 
Sarambf, Acahay, Sapucai, Cafiada, Ybytymf; Na: lqemby, Lambar& Tacumb6, Cerro 
Verde, Cerro Patifio, Villa Hayes), 6 Ponta Grossa Arch (Mato Preto, Barra do Itapirapufi, 
Itapirapufi, Tunas, Ponta Grossa, Jacupiranga, Juquifi, Canan6ia), 7 Lages and Anitfipolis. I, 
II: Rio Piquiri and Rio Uruguay lineaments, respectively (modified after Morbidelli et al., 
1995). 1 and 7 kamafugitic affinity; 2, 3, 5 and 6 plagioleucititic affinity; 4 syenitic rock- 
types 
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Fig. 2. Generalized geological map of eastern Paraguay (Comin-Chiaramonti et al., 1997, 
modified). Inset: Sketch map of the Chiriguelo Complex (Censi et al., 1989, modified) 
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1996), in the westernmost side of the Paranfi Basin. These complexes and the 
tholeiites of  the Paranfi Basin (Early Cretaceous) are more than 3200 and 5000 km 
from the supposed Trindade and Tristan da Cunha mantle plumes, respectively. The 
source mantle of the eastern Paraguay potassic rocks is constrained by high LILE, 
LREE, Th, U and K, which point to a lithospheric mantle source, i.e. 
"metasomatized" garnet peridotite (Comin-Chiarmonti et al., 1997). 

In eastern Paraguay, the carbonatite occurrences crop out in three distinct 
provinces, i.e. Rio Apa, Amambay and Central Province (Fig. 2; Gomes et al., 
1996). In the Rio Apa Province K-basanitic to phonotephritic dykes intrude 
limestones and dolostones of Early Ordovician age, near the Valle-mf township. 
The dykes contain irregular to round-globular large patches (ca. 15wt%) of 
primary carbonates. In the Amambay Province the carbonatites are associated with 
the circular potassic complexes of Cerro Chiriguelo and Sarambf (Castorina et al., 
1996). The Cerro Chiriguelo Complex (ca. 7.5 km across) is mainly formed by 
phonotephrites to high-K trachytes/phonolites surrounding a s0vitic core (cf. inset 
of Fig. 2). Notably, the circular structure is partially covered by the flood tholeiites 
of the Paranfi Basin (4°Ar/39Ar dates: 1 3 3 ±  1 Ma; Renne, 1995, personal 
communication). Alvikitic stringers and late Fe-carbonatite veins crosscut the 
complex. The Sarambf Complex (ca. 7 km across), is characterized by high-K 
trachytic rocks intruded by pyroxenitic, sCvitic and silico-carbonatitic dykes and 
veins (Lechner-Wiens and Quade, 1990; Castorina et al., 1996). The Central 
Province represents the area with the major concentration of potassic complexes 
(Comin-Chiaramonti and Gomes, 1996). The carbonatite occurrences are scarce 
and virtually confined to the Sapucai Complex (Castorina et al., 1996), where 
silico-beforsitic flows and strongly carbonatated phonolitic dykes are present. 
Representative K/Ar dates (Table 1) are 137-138, 130-147 and 121-131 Ma for the 
Rio Apa, Amambay and Central Province, respectively. The preferred ages for the 
above three Provinces, are 137, 135 and 128 Ma, respectively. 

Table 1. Representative K/Ar results for carbonatitic samples from eastern Paraguay. Data 
sources: (1) Velfizquez and Capaldi, unpublished data; (2) Compte and Hasui, 1972; (3) 
Eby and Mariano, 1986; (4) Gomes et al., 1996 

Rock- type  Specimen K wt% 4°ArRan Ar arm% Age 
10-6c ST PP/g 

RIO APA 
VALLE-M[ - STE-B (1) Phono tephr i t e  Bioti te  1 .56 8.62 8.05 137 + 7 
VALLE-M[ - STE-E (1) Phono tephr i t e  Biot i te  1 .88 10 .50  3 3 . 4 4  138 4._ 9 

AMAMBAI 
CHIRIGUELO (2) Phonotephrite Whole rock 7.11 39.90 13.70 139 +_ 2 
CHIRIGUELO (2) Phonotephrite Biotite 6.95 41.30 10.30 147 _. 9 
CHIRIGUELO (3) Silicocarbonatite Whole rock 130 _+ 5 
ARROYO GASORY (3) Trachyte Biotite 7.71 43.25 12.25 135 +_ 7 
ARROYOGASORY (3) Trachyte Whole rock 6.15 34.85 25.22 136 +_ 8 
SARAMBi (1) Glimmerite Whole rock 7.1)8 40.14 28.44 136 4- 9 

CENTRAL 
SAPUCAI (4) Essexi te  Whole rock 7 . 7 9  4 1 . 1 6  17 .50  131 _+ 8 
SAPUCAI (4) Phono l i t e  Whole rock 6 .18  2 9 . 9 9  4.10 121 _+ 4 
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Samples and methods 

The samples studied are representative of the different carbonatitic and associated 
K-alkaline rocks from Eastern Paraguay. They include: (1) Rio Apa Province, 
alkaline dykes from Valle-mf; (2) Amambay Province, s~vites, alvikites and related 
silicate rocks from the Chiriguelo complex, both surface and borehole specimens; 
carbonatitic veins, pyroxenitic dykes and picritic xenoliths from the Sarambf 
complex; (3) Central Province, silico-beforsitic lava flows and phonolitic dykes 
from Sapucai complex and an ijolite from Cerro Cafiada (cf. Fig. 2). Samples of 
limestones and dolostones of Early Ordovician age from the Valle-mf carbonate 
platform were also analyzed for comparison, as well as weathering and meteoric 
calcites from the Chiriguelo complex. 

The procedure for Sr-Nd isotope measurements are given in Castorina et al. 
(1996). The 87Sr/86Sr and 143Nd/144Nd isotopic analyses were performed by means 
of a VG Isomass 54E single collector and a Finnigan MAT 162RPQ multi- 
collector mass spectrometer. Sr and Nd were separated from the matrix using ion 
exchange and reversed phase chromatography. REE were determined by 
inductively coupled mass spectrometry (ICP-MS; Alaimo and Censi, 1992). 
Carbonates for carbon and oxygen isotope analyses were reacted in duplicate with 
100% H3PO 4 at 25 °C for 1 day (calcite) and 3 days (dolomite), and with BrF5 for 
12 hours (oxygen for silicates) and analyzed by means of a Finnigan Mat Delta E 
mass spectrometer. The results are given in terms of the conventional 6%0 units, 
reference standards being PDB-1 and V-SMOW for C and O isotopic compositions, 
respectively. 

Analytical results 

Sample location and the analytical results are listed in Table 2 (C-O isotopes) and 
Table 3 (Sr-Nd isotopes, Rb, Sr, La, Sm, Nd and EREE contents and La/Yb ratios). 
REE abundances are diagrammatically shown in Fig. 3. 

Rare Earth Elements (REE) 

The carbonatites and associated potassic rocks, mainly trachytes and trachy- 
phonolites/phonolites, have steep LREE-enriched patterns with respect to 
chondrites (LaN/YbN= 18-282). Lanthanum content ranges from 150 to 5000 
times chondrites, and both the absolute REE contents and distribution patterns 
conform with those published for similar rock types (cf. Andersen, 1987; Woolley 
and Kempe, 1989). Notably, the carbonatites from the Chiriguelo and Sarambl 
complexes show a strong Eu negative spike, and a Sm-Eu positive spike, 
respectively, similar to those of the associated apatites (Fig. 3). The REE patterns 
suggest that apatite constrains the whole-carbonatite REE abundances, at least in 
the Chiriguelo and Sarambf complexes. 

On the whole, the investigated samples cover the wide variation field of the 
carbonatites in terms of Lavs  La/Yb relationships (Fig. 4; Andersen, 1987). The 
carbonate fractions of alvikite and sCvite display higher La/Yb ratios (e.g. 266- 
330) and lower La (e.g. 250-390 ppm) contents than those of the corresponding 



Table 2. Isotopic O-C values for carbonate and silicate phases from different rock-types from eastern 
Paraguay; (*), data in Livieres (1987). Cc Calcite; Dol dolomite; Cpx clinopyroxene (diopside 
wollastonite 0.5, enstatite 0.4); Of, olivine (fo 86%); Bt, Biotite [Mg/(Mg+Fe 2+) = 0.7]. The standard 
deviation for the whole analytical procedure is about ± 0.05%0 (let)for both carbon and oxygen isotopes 

5180%o 513C°Z~ 6180%o ~)13C%v 
(V-SMOW) (PDB-1) (V-SMOW) (PDB-1) 

R I O  A P A  A M A M B A I  

V a l l e - m f  Chiriguelo, Cc, 
STE-A, Phonotephrite, Cc 17.12 -7.68 late hydrothermal veins 
STE-B, Phonot©phrite, Cc 17.96 -6.82 CAU-08 23.62 -6.19 
STE-C, Basanite, Cc 8.53 -7.30 CHI-01 24.22 -3.98 
STE-D, Phonotephrite, Cc 18.30 -6.96 CHI-02 23.21 -4.11 
STE-E, Phonotephrite, Cc 18.03 -7.75 CHI-03 24.08 -4.55 
PS-279, Dolostone, Cc 23.88 -0.27 CHI-05 22.40 -4.12 

Dol 20.55 - 1.68 CHI-07 23.87 -6.45 
PS-280, Limestone, Cc 22.85 0.57 CHI-12 22.77 -4.92 

AMAMBAI cni-15 21.42 -371 
CHI-16 24.04 -8.07 

Chiriguelo Alkaline Complex cnI-17 22.97 -4.47 
3407, Sevite, Cc 17.87 -7.01 CHI-19 23.77 -6.19 
3408, Sevite, Cc 18.14 -5.97 CHI-20 23.07 -6.24 
3409, So, rite, Cc 14.14 -6.30 CHI-21 22.29 -4.70 
3410, Sevite, Cc 22.33 -4.71 CHI-22 20.85 -2.31 
3411, Alvikite, Cc 15.93 -5.48 CHI-23 21.79 -3.21 
3412, S¢vite, Cc 17.76 -4.98 CHI-25 23.28 -5.26 
3413, Sevite, Cc 16.21 -5.80 CHI-27 23.40 -3.61 
3414, Alvikite, Cc 17.56 -5.75 CHI-28 22.41 -9.10 
3416, Sevite, Cc 16.53 -6.40 Weathering Calcites 
3417, S~vite, Cc 16.38 -4.98 
3418, Sevite, cc 15.56 -6.74 CAU-9 16.21 -7.22 
3419, Sevite, Cc 19.44 -3.97 Chi-04 15.36 -5.38 
3420, Aivikite, Cc 15.45 -6.98 Chi-06 16.79 -7.47 
3422, Alvikite, Cc 13.48 -7.26 Chi-I 1 12.70 -6.06 
3423, D-trachyte, Cc 18.04 -6.89 Chi-18 17.80 -11.42 
3433, Trachyte, Cc 18.71 -5.34 Chi-24 15.29 -8.86 
3434, Sevite, Cc 11.22 -6.52 Chi-26 13.29 -6.95 
3435A, SOvite, Cc 11.53 -7.77 CAU-7f 17.10 -11.50 
3435B, Sevite, Cc 14.94 -6.25 CAU-7g 16.69 - 11.54 
3436, Sevite, Cc 12.51 -7.07 CAU-Th 18.39 -7.63 

3440, Fe-carbonatite, Cc 22.91 -4.10 Groundwater Calcites 
3442, Sevite, Cc 11.76 -8.08 Chi-13 27.21 -5.21 
3443, Alvikite, Cc 13.07 -6.49 Chi- 14 29.58 -8.13 
K- 1 * 19.0 -5.1 CCh-20a 23.61 -4.58 
K-2* 12.8 -7.8 CCh-20b 25.49 -5.55 
K-3* 13.6 -7.1 CCh-20c 24.13 -4.37 
K-4* 17.4 -5.2 CCh- 20d 24.25 -4.31 
K-S* 11.9 -7.3 CCh-05 28.09 -7.72 
K-6* 21.9 -4.7 CCh-20e 24.80 -3.98 
K-7* 14.5 -6.7 C-602 27.38 -4.70 
K-8* 14.0 -7.2 C-700 24.98 -6.28 

CCh-20f 25.20 -6.36 
Chirisuelo, Well-24 CCh-03 25.61 -6.24 
49 ( -93.5 m), Trachyte, Cc 12.36 -4.33 
50 ( -97.5 m), Phonotephrite, Cc 13.55 -3.86 Sarambi Alkaline Complex 
51 (-101.2 m), Trachyphnolite, Cc 15.12 -0.62 SA-90, S0vite, Cc 21.68 -5.68 
52 (- 108.0 m), Trachyte, Cc 11.45 -4.86 SA-91, Silicocarbonafite, Cc 17.11 - 10.37 
53 (-121.7 m), Trachyphonolite, Cc 11.04 -4.51 SA-95, silicocarbonatite, Cc 14.96 -5.68 

54 (-136.8 m), Trachyte, Cc 11.04 -5.84 C E N T R A L  P R O V I N C E  
55 (-142.0 m), Phonotephrite, Cc 13.25 -3.25 Sapucai Alkaline Complex 
56 (- 155.2 m), Silicocarbonatit¢, Cc 10.99 -6.50 
57 (-175.0 m), Silicocarbonatite, Cc 14.96 0.14 PS-72, Silicobeforsite, Dol 14.47 -5.63 
58 (-176.3 m), Phonotephrite, Cc 16.77 0.53 PS-72, Silicobeforsite, Cc 14.00 -6.54 
59 (-183.6 m), Trachyte, Cc 18.47 1.12 PS-94, Phonolite, Cc 16.70 -7.37 
60 (-187.0 m), Silicocarbonatite, Cc 16.98 0.14 Cafiada Alkaline Complex 
61 (-197.0 m), Phonotephrite, Cc 18.53 1.12 PS245, ljolite, whole rock 5.91 
63 (-203.5 m), Trachyphonolite, Cc 15.06 -0.84 PS245, Cpx 5.20 
64 (-233.0 m), Sevite, Cc 9.90 -7.40 PS245, Bt 5.54 
65 (-235.0 m), Trachyphonolite, Cc 12.87 -3.47 PS245, Cc 6.90 -8.5 
68 (-294.0 m), Trachyphonolite, Cc 19.54 1.12 PS245, Ol 4.63 
69 (-333.0 m), Phonolite, Cc 11.79 -2.13 
70 (-361.0 m), Phonotephrite, Cc 13.55 -4.11 
71 (-387.0 m), Trachyte, Cc 12.67 -3.13 



Table 3. Selected trace elements (ppm) and isotope analyses of selected samples from eastern Paraguay. 
WR whole rock," Cc calcite; I. R. insoluble residuum (6.2 N HCI); Dol Dolomite. NBS-987 standard 
87Sr/86Sr measured is 0.71027 -4- 2 (N= 12) and La Jolla standard 143Nd/144Nd measured is 0.51185 
-4- 1 (N-- 5). The reported uncertainties on Sr-Nd isotopic compositions represent in-run statistics at the 
95% (2or) confidence level. The Et notations are from the following ages: Rio Apa, 137 Ma; Amambay, 
135 Ma; Central, 128 Ma, and calculated using present day bulk-Earth parameters, i.e. UR = 0.7045 
(g7Rbfl6Sr----0.0816) and CHUR = 0.512638 (147Sm/144Nd= 0.1967). The isotope analyses were done at 
"Centro di Studio per il Quaternario e 1 'Evoluzione Ambientale", CNR, Rome 

Rock-type 
RIO APA 
STE-A 

STE-B 

Rb Sr La Sm Nd La/Yb REE 875r/865r 143Nd/144Nd etSr ~tNd TDM 

Phonotephrite WR 20.8 
Cc (~15%) 4.9 
I.R. 23.6 
Phonotephrite WR 28.1 
Cc (~10%) 1.1 
I.R. 31.1 
Basanite WR 40.6 
Cc (-15%) 0.9 

STE-C 

STE-D Phonotephrite WR 26.7 
Cc (~10%) 3.5 
I.R. 30.1 

STE-E Phonotephrite WR 31.1 
Cc (~20%) 26.8 121 
I.R. 32.2 

PS-279 Doloston© 4.9 1.05 
PS-280 Limestone 7.3 0.86 

AMAMBAI 
Chiriguelo 
3409 SCvit¢ WR 31.0 4158 1546 36.0 309.0 
3411 Aivikit¢ WR 24.0 2031 1257 33.0 181.0 
3420 Alvikite WR 36.0 3129 1016 28.0 133.0 
3422 Alvikite WR 39.0 5243 1169 30.0 178.0 

Cc 17.8 5904 456 28.1 136.0 
3423 I)-Trachyte WR 218.0 500 77.0 405.0 
3424 D-Trachyte WR 256.0 543 64.1 358.0 
3434 SCvite WR 36.0 7441 590 20,0 120.0 

Cc 31.4 11111 388 17.6 99.9 
3435A Alvikite WR 39.0 9133 565 20.0 124.0 

Cc 24.1 14520 250 14.4 79.9 
3435B S0vite WR 58.0 4397 1028 18.0 117.0 

Cc 20.0 9972 304 24.2 88.0 
3440 Fe-carbonatite WR 151.0 1776 312 12.0 110.0 
3442 Scvite Cc 27.1 17940 209 15.0 49.8 
3443 Alvikit¢ WR 59.1 7103 889 27.2 151.0 
24-52 Trachyt¢ WR 63.9 2187 66.4 10.8 66.5 

Cc 35.5 2923 152.9 14.8 74.5 
24-56 Si-carbonafit¢ WR 341.0 8650 1651 162.6 1203 
24-61 Phonotephrite WR 151.6 1731 112.8 10.9 118.2 

Cc 36.0 3158 10.1 56.38 
I.R. 667.4 1536 11.0 126.5 

24-64 S0vite WR 28.9 10300 1742 131.5 679.0 
24-71 Trachyte WR 328.9 863 60.0 6.61 49.8 

Sarambi 

2153 101 26.7 127.0 28.2 566 0.707683(7) 0.512059(8) 46.7 -10.1 1678 
1038 169 39.2 194.0 32.4 893 0.707698(41)0.511937(5) 4 7 . 3 - 1 2 . 4  1780 
2350 89 23.3 115.0 27.5 508 0.707643(7) 0.511961(8) 46.1 -11.9 1749 
1926 21.7 114.0 0.707711(8) 0.511820(8) 46.7 -14.5 1828 
7092 130 27.3 147.9 30.9 646 0.707534(8) 0.511944(4) 45.3 -12.0 1602 
1352 23.3 l l 0 . 0  0.707855(10) 0.511951(3) 48.1 -12.2 1867 
1151 149 23.8 148.7 57.1 667 0.707165(6) 0.511937(10) 37.3 -11.9 1424 

12846 155 31.7 158.2 31.3 715 0.707059(10) 0.511935(12) 38.6 -12.4 1765 
2212 22.6 104.8 0.708110(7) 0.511950(8) 52.5 -12.3 1915 
3354 143 35.8 155.9 26.7 732 0.707843(16) 0.511930(10) 49.6 -12.8 2142 
1974 21.1 98.2 0.708123(7) 0.511947(9) 52.5 -12.3 1910 
2199 23.5 125.2 0.707111(10) 0.511951(8) 38.2 -11.9 1620 
1073 24.6 132.3 35.3 589 0.707100(15) 0.511930(10) 37.2 -12.3 1633 
2929 23.1 120.7 0.707165(6) 0.511971(7) 39.2 -11.6 1625 

272 0.15 0.60 35.0 3.8 0.70873(2) 
2670 0.46 0.48 14.3 3.7 0.70842(2) 

140.5 3521 
96.7 2724 

101.6 2134 
146.1 3422 
332.8 1213 0.707215(10) 0.511653(7) 40.5 -18.0 2267 

0.70954(2) 0.511708(3) 39.4 -16.7 1983 
0.70975(2) 0.511735(5) 39.6 -16.1 1832 

98.3 1369 
265.8 1132 0.707220(10) 0.511660(9) 40.6 -17.5 1902 
113.0 1325 
305.0 769 0.707219(10) 0.511731(10) 40.7 -16.2 1849 
128.5 2075 
330.4 916 0.70722(3) 0.511739(7) 40.7 -17.0 

78.0 655 
418.0 591 0.707218(10) 0.511659(9) 40.7 -18.8 

98.8 2170 0.707256(7) 0.511730(9) 40.7 -16.2 1849 
57.7 275 0.707686(12) 0.511810(8) 45.2 -14.5 1594 

118.5 497 0.707621(18) 0.511831(10) 45.6 -14.4 1900 
281.3 5322 0.707526(8) 0.511639(6) 4 2 . 1 - 1 7 . 5  1593 
42.71 592 0.708182(7) 0.511753(3) 47.6 -14.8 1254 

0.707910(7) 0.511796(3) 49.7 -14.9 1751 
0.709859(18) 0.511782(13) 44.1 -14.2 1195 

312.7 4578 0.707324(8) 0.511733(5) 42.1 -16.3 1987 
28.8 225 0.709628(10) 0.511799(7) 45.0 -14.4 1407 

PS-94 Phonolite 

Cafiada 
PS-245 Ijolite 

WR 148.0 1126 80 11.3 62.0 0.70807(2) 0.511804(6) 42.9 -14.8 1771 
Dol 3.2 106.4 239 19.1 159.9 75,6 928 0.70755(4) 0.511795(19) 4 3 . 2 - 1 4 . 4  1336 
1.i~. 227.0 1453 16.6 111.0 0.70820(3) 0.511800(15) 43.0 -14.6 1513 
Cc 6.3 103.7 76 2.3 18.7 126.7 203 0.70657(3) 0.512078(10) 27.0 -8.9 1066 

WR 114.0 1624 108 13.8 90.2 794 786 0.70737(2) 0.51192(1) 37.6 -12.3 1397 

SA-95 SilicosCvite Cc 16.8 1065 159 26.1 42.1 62.4 420 0.70772(2) 0.511699(8) 46.7 -21.4 - 
GL-SA Cdmnmdte WR 138.1 1387 14.7 123.0 0.70817(2) 0.511463(3) 46.5 -20.8 1671 
Z1-A Pyroxenite WR 9.9 870 2.8 21.0 0.707245(10) 0.511471(9) 40.3 -20.8 1760 

CENTRAL 
Sapucai 
PS-72 Si-beforsite 
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Fig. 3. Chondrite normalized (Boynton, 1984) REE distribution patterns for carbonatites 
and related rocks from Eastern Paraguay 

host rocks (La/Yb=98-129,  La=565-1028ppm).  On the other hand, the 
carbonate fractions from the silicate rocks show both higher La and La/Yb than 
those of the corresponding silicate fractions (Table 3). 

Figure 4 illustrates also the La vs La/Yb relationships for basanite-tephrite and 
phonolite-trachyte suites and associated primary carbonates. If the differentiation 
of the CO2-bearing parental magma is relatively restricted (i.e. basanite to 
phonotephrite), the exsolved carbonatitic melt is relatively small and crystallize 
forming groundmass patches. On the other hand, if the evolution from basic melts 
leads to phonolite or trachyte, the latter magmas may exsolve carbonatite melts 
characterized by high La and La/Yb relative to the parental fluid-rich basic 
magmas. 

The mixing curves between parental magma(s) and the carbonatites (Fig. 4) 
provide an estimation of the CO2-rich melt fraction(s). Considering that the 
primary carbonates (up to 15-20wt%) of the silicate rocks represent late 
crystallized phases, and that the carbonatites may represent the carbonatitic liquid 
exsolved from trachytic/phonolitic magma, the total carbonatitic magma appears to 
be higher than 30-35 wt% of the carbonate content in the parental silicate melt. 
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Fig. 4. Lavs La/Yb ratios for the investigated samples (silicate rocks, carbonatites and 
carbonates) from eastern Paraguay; carbonatite field from Andersen (1987). Dotted area 
represents the limits of trachytic/phonolitic rock-types exsolving carbonatitic magma(s), as 
inferred by mixing (heavy) curves showing the fractions of residual liquid. Inset: evolution 
path from basanitic to carbonatitic magma 

Thus, if for example, the basanite from Valle-mf (Rio Apa) is assumed as the 
parental magma of the carbonatites, the evolution consists of two main steps: (1) 
the first step (basanite ~ trachyphonolite) leads to differentiated rock-types by 
crystal fractionation and allows the concentration of CO2-rich fluids, and (2) the 
second one promotes the exsolution of about 20 wt% carbonatitic liquids from the 
differentiated phonolitic magma (cf. inset of Fig. 4). 

It should be noted that both the parental magmas and most of the associated 
carbonatites plot within the "carbonatite field" of Andersen (1987). This suggests 
that the parental magmas of the carbonatites are characterized by high CaO/A1203, 
La/Yb and Ti/Eu (cf. Wallace and Green, 1988; Dautria et al., 1992; Dalton and 
Wood, 1993; Rudnik et al., 1993). CaO/A1203 vs La/Yb and Ti/Eu respectively 
(Fig. 5) show that the K-basanite-silico-carbonatite-carbonatite suites from Rio 
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Apa and Amambay regions are characterized by CaO/AlzO3 increase, assisted by 
Ti/Eu decrease and La/Yb increase. It is notable that the K-basanites of the 
carbonatite suite have higher CaO/A1203 ratios relative to those of the Central 
Province and may, therefore, reflect mantle portions which underwent significant 
carbonatitic metasomatism. The initial stages of differentiation of the CO2-rich 
K-basanites are characterized by a silicate fraction which prevails on the 
carbonatitic component (cf. kamafugites from Alto Parana~a, Brazil; Gibson et 
al., 1995) which, instead, are prominent on the last stages of differentiation. 
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Carbon and oxygen isotopes 

The oxygen and carbon isotopic data are plotted in Fig. 6. (SlSO (V-SMOW) and 
613C (PDB-I) values from magmatic carbonates mainly range between 6.5 and 
24%o, and between - 8 and 1%0, respectively. ~1 s O and ~J 3C from weathering calcites 
and meteoric calcites are in the ranges 13 to 18%o and 23 to 30%0, and -11 to -5%o 
and - 8  to -4%o, respectively (Table 2). Note that the sedimentary carbonates from 
Valle-mf have (5 j 8 0  and 613C ranging from 20.6 to 23.9%o and from -1 .7  to 0.6%0, 
respectively, and that the isotopic C-O values of the carbonatites from eastern 
Paraguay overlap those from southern Brazil (inset of Fig. 6). The inset of Fig. 6 
also shows two main areas of isotopic C-O variations for the Brazilian carbonatites. 
The first one (fields 1,4 and 5; specimens from boreholes and/or mined quarries) is 
characterized by a shifting toward positive values of both 5180 and 6J3C. The 
second area (fields 2, 3, 6 and 7), which represents surface specimens, shows heavy 
O increase at similar values of ~5~3C. 

Two main linear trends can be delineated for the carbonatitic rocks from 
eastern Paraguay. The first one is defined by the carbonates from silicate rocks of 
the Chiriguelo well (linear correlation coefficient: r = 0.84), while the second trend 
includes the magmatic carbonates of alvikites and scvites (Censi et al., 1989) 
sampled near to, or at the topographic surface (r = 0.86). The two trends define an 
intercept at 61SO = 7.45%0 and ~3C =-8.52%0, corresponding to those of the 
primary carbonates ((5J80 = 6.9%o and (5~3C=-8.5%o) of the K-ijolite from Cafiada 
(eastern Paraguay, Central Province). These carbonates coexist with olivine 
(6180 = 4.63%o), clinopyroxene (6180 = 5.20%o) and biotite (6180 = 5.54%0). In the 
Cafiada K-ijolite, the silicate minerals show isotopic equilibration temperature of 
about 1200 °C (clinopyroxene-biotite = 1208 °C; clinopyroxene-olivine = 1201 °C; 
Bottinga and Javoy, 1975), whereas clinopyroxene-calcite pairs yielded an 
equilibration temperature of 690 °C (Matthews et al., 1983). 

Strontium and neodymium isotopes 

The Rb-Sr and Sm-Nd isotopic systematics of the investigated samples do not 
define isochrons (cf. Comin-Chiaramonti and Gomes, 1996), e.g. the Amambay 
samples (n=  19) yielded 131 4-68Ma. Assuming the ages in Table 3, the mean 
values for inititial 878r]86Sr and 143Nd/a44Nd ratios are, respectively: Rio Apa 
(137Ma), 0.70749 (4-0.00039) and 0.51184 (+0.013001); Amambay (135Ma), 
0.70738(4-t-0.00022) and 0.51160 (4-0.00011); Central Province (128Ma), 
(0.70713 4-0.00032) and 0.51174 (4-0.00009). These Sr and Nd isotopic values 
do not result from crustal contamination, but reflect the "enriched component" of a 
metasomatized depleted mantle (Comin-Chiaramonti et al., 1995, 1997). Sr and Nd 
isotopes of carbonatites are consistent with those of the associated K-alkaline rocks 
(Fig. 7). Notably, alvikites of the Chiriguelo complex, which are believed to 
represent low-temperature hydrothermal conditions (Censi et al., 1989), are in the 
same Sr-Nd isotopic range of the main scvite, whose carbonates recrystallized 
at high hydrothermal temperatures. Finally, the sedimentary carbonates from 
Valle-mf display 878r/S6Sr (137Ma)=0.70850 (Table 3), while the Proterozoic 
crystalline basement has STSr]86Sr ratio of 0.71689 (Veldzquez et al., 1996). In 
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summary, Sr and Nd isotopes indicate that the investigated carbonatitic samples 
and associated potassic rocks were not affected by appreciable crustal contamina- 
tion during their emplacement (Fig. 7B). 

Discussion 

In a previous paper based on surface specimens, Censi et al. (1989) showed that the 
C-O isotopic systematics of the carbonatitic rocks from the Chiriguelo complex 
reflected three main processes, i.e. (1) emplacement at shallow levels of s0vites 
which reached 5180 and ~13C values of about 8.5%0 and -6.5%0, respectively via 
distillation; (2) vapour exchange processes, which changed the latter fiI80 and ~13C 
values to 20%o and -4.5%0, respectively, and (3) low (<50°C) temperature 
weathering, responsible for 5180 = 23%0 and ~13C =-4.5%0.  

The samples from the Chiriguelo bore-holes and other carbonatitic occurrences 
from eastem Paraguay, allowed a further insight in the carbonatite magma genesis 
and evolution. Oxygen and carbon isotopes provided important informations about 
the evolution of a CO2-rich magma. This is discussed below, where the term 
"magmatic processes" is used to include partial melting, fractional crystallization 
and liquid immiscibility, "fluid processes" will refer to the interaction between 
rocks and fluids at different temperatures, including low-temperature weathering. 
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"Magmatic processes" 

Assuming the K-ijolite PS-245 (mg#=Mg/(Mg+Fe2+)=0.68;  Comin-Chiara- 
monti and Gomes, 1997) as representative of an O-C near primary, mantle-derived 
melt (intercumulus calcite: ~180 = 6.9%0 and 613C = -8.5%0, AO = 0.7, AC = 1.5, 
cf. Kyser, 1990), and that fractional crystallization + liquid immiscibility were 
responsible for variations not higher than 2%0 both for 6180 and 613C (cf. Santos 
and Clayton, 1995), the expected values for 6~ 80 and (513C should not exceed 9%0 
and -6.5%o, respectively. 

The magmatic paths (see Appendix for calculation) may be related to two 
evolutionary steps, i.e. (a) partial melting of subcontinental mantle (6~So = 6.9%0 
and ~5t3C = -10%o) and differentiation of the primary magmas to the values of the 
K-ijolite PS-245 with CO2/H20 rat io=0.1,  and (b) evolution with a CO2/ 
H20 ~ 0.2 (shallow intrusion), and with a C O 2 / H 2 0  ~ 2.0 ("surface" condition), 
respectively (Fig. 8). 

"Fluid processes" 

1. O-C modelling 

After the crystallization of primary carbonates, the residual fluids may migrate and 
fenitize the country rocks, as well as the crystallized carbonates. The variations of 
O-C isotopes of neo-carbonates, due to the interaction between fluid and primary 
carbonates, will follow paths which depend on temperature and rock/water ratio 
(Zheng and Hoefs, 1993; cf. Appendix for details). 

In Fig. 8 the variation paths relative to the O-C isotopic compositions during 
hydrothermal water-rock interaction are shown for a temperature range 400-100 °C 
(curve I, which fits the line 2 of Fig. 6), and 400-80 °C (curves II and III which 
enclose the straight line 1 of Fig. 6). Note that the low-temperature carbonates plot 
between curves II and III, or below III. The lowest values of ~13C (enrichment in 
lZc) may be related to hydrolysis of biogenic CO2. In this case, if the pH of the 
solutions is determined by humic acids, the ratio [HCO~-]/[Ca ++] is a temperature 
function (cf. Taylor, 1978 and Usdowski, 1982). For pH ~ 5 the major contribution 
of the biogenic component is at temperatures between 60 and 80 °C (Fig. 8). 

2. Trace elements 

In hydrothermal environments, the rock/water (R/W) interaction modifies the trace 
element content. Following Nabelek (1987): 

[R/W(o)] I = 1/D {ln [Cwi - C(CC)iD)/(Cwi - C (cc)fD)]}, 

where Cwi, C(CC~i and C(CC~f are the concentrations of a trace element in the fluid (w) 
and in the carbonate (cc), at the beginning (i) and at the end (f) of the interaction, 
respectively; D[Cwf/C(CC)f] is the ratio between a trace element in the fluid (wf) and 
in the carbonate (ccf) at the end of the interaction. From calculated rock/fluid ratios 
(equation [8] in Appendix), and for fixed Cwi, C(CC) i and C(CC~f values, the variation 
of a trace element and ~5180 is calculated by the above equation. According to 
Nabelek's(1987) model, the highest concentration of trace elements like Sr and 
REE are associated with temperatures higher than 200 °C. 
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Fig. 6 

The variation paths of 6180 vs Sr, EREE contents (ppm) and La/Yb ratio are 
represented in Fig. 9. In the model Cwi is > C(CC) i, i.e. "fenitizing" fluid enriched in 
incompatible elements with respect to the primary carbonates, according to the 
enrichment of halogens in the fluid and Sr, REE, and other elements as halogen- 
complexes (Wood, 1990; Bau, 1991; Rubin et al., 1993). In hydrothermal 
environments, the speciation of halogen-, hydroxide- and carbonate-complexes is a 
function of the pH range in the fluid (Haas et al., 1995). According to the 
interaction model of fluid-carbonatite, the pH range compatible with the system 
will depend on the C O 2 ] H 2 O  ratio of the fluid, varying from 8.4-6.5 at 350 °C to 
5.3-3.4 at 50 °C, respectively. It seems conceivable that a variable speciation in the 
hydrothermal fluid will start with REE strongly linked to hydroxides, and will stop 
with F-C1-REE complexes at the end of the hydrothermal process (cf. Hass et al., 
1995). 
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Mantle source characteristics 

Typical specimens of potassic rocks from eastern Paraguay yielded initial 87Sr]S6Sr 
(Sr0 and 143Nd/144Nd(Ndi) isotopic ratios within the ranges 0.70612-0.70754 and 
0.51154-0.51184, respectively (Comin-Chiaramonti et al., 1997). These are similar 
to the associated carbonatites, but distinct (Fig. 10) from the potassic rocks and 
associated carbonatites from southern Brazil (Alto Paranaiba, Taiuv{t-Cabo Frio, 
ponta Grossa Arch and Lages). The latter rocks tend to plot toward the bulk Earth, 
while the eastern Paraguay analogues have higher Sri and lower Ndi values and 
appear as an extension of the "Low Nd" array of Hart et al. (1986) in the enriched 
quadrant. Contamination models of the melts with crustal material imply 
unrealistic (up to 50%) contaminant fractions (Comin-Chiaramonti et al., 1997). 
Likewise, AFC processes do not account for the isotope data of the potassic rocks, 
given the poor correlations (not shown) between LILE and Sri and Ndi. The data 
support the view that the potassic and carbonatitic rocks from eastern Paraguay, 
typically high in radiogenic Sr worldwide, represent the range of virtually 
uncontaminated magmas from this region. 

Nd-model ages (inset B of Fig. 10) for potassic rocks from eastern Paraguay 
(depleted mantle: T DM) range from 1.4 to 2.0 Ga (mean = 1.5 + 0.2 Ga). In general, 
high-Ti and low-Ti uncontaminated tholeiites from the Paran~ Basin (H-Ti and 
L-Ti, respectively; inset A of Fig. 10) show mean T DM of 1.1 ±0.1 and 
1.5 ± 0.2 Ga, respectively. The range of model ages estimated for the potassic rocks 
implies that the corresponding melts derived from subcontinental mantle sources 
enriched by mantle "metasomatic processes'since Middle to Late Proterozoic 
times. These calculations require that Sm/Nd fractionation was not significant 
during magma genesis. 

TDM(Nd) model ages show that most potassic rocks and associated carbonatites 
from SE-Brazil range from 0.5 to 1.1 Ga. This range is virtually the same as that for 
high-Ti Paranfi tholeiites. On the other hand, only the potassic rocks and 
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carbonatites from eastern Paraguay yielded T DM of early Middle Proterozoic age, 
the same as most of the low-Ti uncontaminated Paranfi tholeiites (Comin- 
Chiaramonti et al., 1997). 

These model ages indicate that two notional distinct mantle metasomatic events 
may have occurred during the Middle and Late Proterozoic as precursors to the 
potassic-carbonatitic and tholeiitic magmatism in the Paranfi Basin. These 
metasomatic processes were chemically distinct, as indicated by the strong 
differences in Ti, LILE and HFSE concentrations between the alkaline rocks and 
tholeiites (low- vs high-Ti types) of the Paranfi Basin (Castorina et al., 1994, 1996; 
Comin-Chiaramonti et al., 1997). 

Conclusions 

Significant variations in O-C isotope compositions occur in primary carbonates of 
potassic rock types from eastern Paraguay. These variations are mainly due to 
isotope exchange between carbonates and H20-CO 2 rich fluids, whereas magmatic 
processes, i.e. fractional crystallization or liquid immiscibility, probably affect the 
~5180 and 613C values by not more than 2%0. The isotope exchange model implies 
that the main isotopic variations occurred at low temperature, in a hydrothermal 
environment, e.g. in the range 400-80 °C, involving fluids with a CO2/H20 ratio 
ranging from 0.8 to 1. Two main paths of 61So-613C fractionation are generated by 
subvolcanic and surface conditions, respectively. Weathering and groundwater 
fluids, therefore, appear to be important, as well as meteoric water, which yielded 
samples strongly enriched in light carbon due to contamination by a biogenic 
component. The behaviour of trace elements (e.g. Sr and REE) is consistent with 
the above conclusions. 

In general, Sr-Nd isotopes and trace-element data from potassic rocks from 
eastern Paraguay show that the associated carbonatites and associated primary 
carbonates reflect the composition of the source mantle. In particular, Sr and Nd 
isotopic data indicate that the carbonatite system is dominated by mantle 
component(s) without appreciable crustal contamination. Thus, in spite of the 
great variation shown by C-O isotopes due to "fluid processes", Sr-Nd isotopic 
systematics can be related to an isotopically enriched source where the chemical 
heterogeneities reflect a depleted mantle "metasomatized" by small-volume melts 
and fluids rich in incompatible elements (Castorina et al., 1994, 1996; Comin- 
Chiaramonti et al., 1997). These are expected to have promoted crystallization of 
K-rich phases which gave rise to a veined network variously enriched in LILE and 
LREE. The newly formed veins ("enriched component") and peridotite matrix 
("depleted component") underwent a different isotopic evolution with time which 
is reflected by the carbonatitic rocks. These conclusions may be extended to the 
whole Paraml Basin, where isotopically distinct alkaline and tholeiitic magmas 
were generated following two main "enrichment events" of the subcontinental 
lithospheric mantle at 2.0-1.4 and 1.0-0.5 Ga, respectively. The mantle sources 
preserved the isotopic heterogeneities over a long period of time, suggesting a non- 
convective (i.e. lithospheric) mantle beneath different cratons or intercratonic 
regions (Comin-Chiaramonti et al., 1997). 
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Appendix 
Isotopic O-C modelling for magmatic and hydrothermal evolution of carbonatitic 
rocks was carried out using Microsoft Excel 5 programs (Speziale et al., 1997). The 
programs are available on request as worksheet from Dr. P Censi (Istituto di 
Mineralogia, Petrografia e Geochimica, Universitfi di Palermo, via Archirafi, 36, 
1-90123, Palermo, Italy). 

"Magmatic processes" 

The following hypotheses are considered for the modellization of Fig. 8: 
(A) partial melting of a garnet-peridotite (cf. Comin-Chiaramonti and Gomes, 

1996); 
(B) evolution of the liquid by fractional crystallization at a temperature of about 

1200°C in a closed system, CLM to PS-245 (Canada K-ijolite, Central 
Province, Eastern Paraguay) composition and a final temperature between 
750-400 °C; 

(C) primary carbonate crystallization from a hypercritical CO2-H20-rich liquid, 
according to the relationship: 

[1] CO2 + H20 ---+ CO~- + 2H+; 

(D) CO2 and H20 are the only O-C sources in the system; 
(E) mass balance: 

C518 0 i [2] 2A6180(co2) i + (H20) = 2a6'80(co23 + 3b6180(cc) + ©6180(rt2o3 

and 

[3] A513C(co2) i = a(~13C(co2) + bS13C(cc) 

where a, b, c are CO2, CO~- and H20 molar concentrations in the system at time 
t ~ "i"  (initial time), A, C are the initial C O  2 and H20 concentrations at " i"  
before the crystallization of the carbonate, cc represents the isotopic composition 
of the carbonate {i. e., fixed A, from C02/I--I20 initial ratio, C is defined}; in this 
case [2]-[3] have a behaviour in which the values of the various components will 
be defined for each "t" from b = A - a  and e = C-b}, and it follows that the 
isotopic composition of the carbonate can be determined by the isotopic 

18 18 fractionation factors A O(co2_cc), A O(cc_H20) , A13C(co2_cc ) (Bottinga, 1968; 
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O'Neil et al., 1986): 

[4] 
tS180(cc) = [2At5180(co2) i + G(~180(H20) i --  2a/k180(co2_cc ) 

+ ©A180(cc_n2o)]/[3b + 2n + ¢] 

[5] 613C(cc) = [A613C(c02)  i - ( A  - b ) A 1 3 C ( c o 2 _ c c ) ] / A  

"Fluid processes" 

The equations, according to Zheng and Hoefs (1993), are: 

6180(cc) ~-(6180(H20) i  -1 - AlSO(cc_H20)  ) 
[6] 

- [(6180(H20) i + A180(cc_H20)) -- 6180(cc) i) exp(-R/W(o))] 

~13C(cc) ~-- ((~I3C(Hco3)i -~ - A13e(cc_HC03) )  - [(~13C(Hc03) i 
[7] 

+ A13C(cc_HC03 ) -- ~513C(cc)i ) exp (-R/W(c)X(HC03))] 

where ~5180(cc),6 13C(c~): calcite O-C starting isotopic values; ~13CHco3i:  i n i t i a l  
C-value of HCO3- in the fluid; x(HCO3): HCO3- molar fraction in the fluid; R/ 
W(o) and R/W(c) rock/water ratios for O and C, respectively, defined as (Kps being 
the calcite solubility product): 

[8] R/W(o) = 3Kps/{[H20][CO2-]}; 

[9] R/W(c) = Kps/{[H2CO3] + [HCO3]}[CO~-, R/W = f(T°K), 

according to Jacobson and Langmuir (1974): 

[10] log Kps = - 13.870 - 3059/T°K - 0.04035*T°K 

Also HCO 3, molar fraction in the fluid, is f(T°K), because the constants of the 
equil ibria:  CO2 + H20 ~ H2CO3(K0) and H2CO3 ~ H + + HCO~-(K1) are 
f(T°K), and, following (Harned and Davis, 1943): 

[11] log Ko = -14.0184 + 2385.73/T°K + 0.0152642*T°K, 

[12] log K1 = -14.8435 + 3404.71/T°K-  0.032786*T°K, 

C speciation depending on temperature. T h e  ~13C(HcO3) i, initial isotopic compo- 
sition, is then calculated from isotopic fractionation according to Mook et al. 
(1974), for various ~513C of CO2 in the fluid. 
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